Open Carbon Nanopipettes as Resistive-Pulse Sensors, Rectification Sensors, and Electrochemical Nanoprobes

被引:50
作者
Hu, Keke [1 ,2 ,3 ]
Wang, Yixian [3 ]
Cai, Huijing [3 ]
Mirkin, Michael V. [3 ]
Gao, Yang [4 ,6 ]
Friedman, Gary [4 ,6 ]
Gogotsi, Yury [5 ,6 ]
机构
[1] Beijing Inst Technol, Key Lab Cluster Sci, Minist Educ China, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Photoelect Electrophoton Convers, Sch Chem, Beijing 100081, Peoples R China
[3] CUNY Queens Coll, Dept Chem & Biochem, Flushing, NY 11367 USA
[4] Drexel Univ, Dept Elect & Comp Engn, Philadelphia, PA 19104 USA
[5] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[6] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
ION-TRANSFER; MICROSCOPY; TRANSPORT; NANOPORES; PROBE;
D O I
10.1021/ac5022908
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
引用
收藏
页码:8897 / 8901
页数:5
相关论文
共 53 条
[1]   Voltage-Controlled Metal Binding on Polyelectrolyte-Functionalized Nanopores [J].
Actis, Paolo ;
Vilozny, Boaz ;
Seger, R. Adam ;
Li, Xiang ;
Jejelowo, Olufisayo ;
Rinaudo, Marguerite ;
Pourmand, Nader .
LANGMUIR, 2011, 27 (10) :6528-6533
[2]  
Amemiya S., 2013, Specialist Periodical Reports in Electrochemistry, V12, P1
[3]  
Amemiya S., 2014, ELECTROANAL IN PRESS, V26
[4]   Probing rapid ion transfer across a nanoscopic liquid-liquid interface [J].
Cai, CX ;
Tong, YH ;
Mirkin, MV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) :17872-17878
[5]   Scanning Ion Conductance Microscopy [J].
Chen, Chiao-Chen ;
Zhou, Yi ;
Baker, Lane A. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 5, 2012, 5 :207-228
[6]   Pipette-Surface Interaction: Current Enhancement and Intrinsic Force [J].
Clarke, Richard W. ;
Zhukov, Alexander ;
Richards, Owen ;
Johnson, Nicholas ;
Ostanin, Victor ;
Klenerman, David .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) :322-329
[7]   Integrated Ultramicroelectrode-Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy [J].
Comstock, David J. ;
Elam, Jeffrey W. ;
Pellin, Michael J. ;
Hersam, Mark C. .
ANALYTICAL CHEMISTRY, 2010, 82 (04) :1270-1276
[8]   Scanning Electrochemical Cell Microscopy: A Versatile Technique for Nanoscale Electrochemistry and Functional Imaging [J].
Ebejer, Neil ;
Gueell, Aleix G. ;
Lai, Stanley C. S. ;
McKelvey, Kim ;
Snowden, Michael E. ;
Unwin, Patrick R. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 6, 2013, 6 :329-351
[9]   Polished Nanopipets: New Probes for High-Resolution Scanning Electrochemical Microscopy [J].
Elsamadisi, Pansy ;
Wang, Yixian ;
Velmurugan, Jeyavel ;
Mirkin, Michael V. .
ANALYTICAL CHEMISTRY, 2011, 83 (03) :671-673
[10]   Bipolar Electrochemistry [J].
Fosdick, Stephen E. ;
Knust, Kyle N. ;
Scida, Karen ;
Crooks, Richard M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (40) :10438-10456