On gradient Ricci solitons conformal to a pseudo-Euclidean space

被引:24
作者
Barbosa, Ezequiel [1 ]
Pina, Romildo [2 ]
Tenenblat, Keti [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Potential Function; Sectional Curvature; Einstein Manifold; Ricci Soliton; Riemannian Case;
D O I
10.1007/s11856-014-0014-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider gradient Ricci solitons, conformal to an n-dimensional pseudo-Euclidean space, which are invariant under the action of an (n - 1)-dimensional translation group. We provide all such solutions in the case of steady gradient Ricci solitons.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 9 条
[1]   Ricci solitons on Lorentzian manifolds with large isometry groups [J].
Batat, W. ;
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :1219-1227
[2]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[3]  
Brozos-Vasquez M., 2013, J GEOM ANAL, V13, P1196
[4]   THREE-DIMENSIONAL LORENTZIAN HOMOGENEOUS RICCI SOLITONS [J].
Brozos-Vazquez, M. ;
Calvaruso, G. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) :385-403
[5]  
Bryant R, LOCAL EXISTENC UNPUB
[6]   ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2377-2391
[7]  
Davis H.T., 1962, Introduction to Nonlinear Differential and Integral Equations
[8]   Rigidity of shrinking Ricci solitons [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) :461-466
[9]   Lorentz Ricci Solitons on 3-dimensional Lie groups [J].
Onda, Kensuke .
GEOMETRIAE DEDICATA, 2010, 147 (01) :313-322