Existence of solutions for time fractional order diffusion equations on weighted graphs

被引:0
作者
Wattanagul, Kaninpat [1 ]
Ngiamsunthorn, Parinya Sa [1 ,2 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fac Sci, Math & Stat Applicat MaSA Res Grp, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2022年 / 13卷 / 02期
关键词
Calculus on Graphs; Diffusion Equations; Fractional Calculus;
D O I
10.22075/ijnaa.2021.23258.2511
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the concept of diffusion equations on weighted graphs, which is also known as omega-diffusion equations, to study fractional order diffusion equations on weighted graphs. More precisely, we replace the ordinary first order derivative in time by a fractional derivative of order alpha in the sense of Riemann-Liouville and Caputo fractional derivatives. We prove the existence of solutions of fractional order diffusion equations on graphs using the concept of alpha-exponential matrix and illustrate the solutions through numerical simulation in various examples.
引用
收藏
页码:2219 / 2232
页数:14
相关论文
共 23 条