Fermionic Superradiance in a Transversely Pumped Optical Cavity

被引:97
作者
Keeling, J. [1 ]
Bhaseen, M. J. [2 ]
Simons, B. D. [3 ]
机构
[1] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[2] Kings Coll London, Dept Phys, London WC2R 2LS, England
[3] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
PHASE-TRANSITION; SELF-ORGANIZATION; ATOMS; FIELD; GAS;
D O I
10.1103/PhysRevLett.112.143002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following the experimental realization of Dicke superradiance in Bose gases coupled to cavity light fields, we investigate the behavior of ultracold fermions in a transversely pumped cavity. We focus on the equilibrium phase diagram of spinless fermions coupled to a single cavity mode and establish a zero temperature transition to a superradiant state. In contrast to the bosonic case, Pauli blocking leads to lattice commensuration effects that influence self-organization in the cavity light field. This includes a sequence of discontinuous transitions with increasing atomic density and tricritical superradiance. We discuss the implications for experiment.
引用
收藏
页数:5
相关论文
共 47 条
[1]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[2]   Exploring Symmetry Breaking at the Dicke Quantum Phase Transition [J].
Baumann, K. ;
Mottl, R. ;
Brennecke, F. ;
Esslinger, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[3]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[4]   Dynamics of nonequilibrium Dicke models [J].
Bhaseen, M. J. ;
Mayoh, J. ;
Simons, B. D. ;
Keeling, J. .
PHYSICAL REVIEW A, 2012, 85 (01)
[5]   Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering [J].
Black, AT ;
Chan, HW ;
Vuletic, V .
PHYSICAL REVIEW LETTERS, 2003, 91 (20) :203001/1-203001/4
[6]  
Brahms N, 2011, NAT PHYS, V7, P604, DOI [10.1038/NPHYS1967, 10.1038/nphys1967]
[7]   Cavity QED with a Bose-Einstein condensate [J].
Brennecke, Ferdinand ;
Donner, Tobias ;
Ritter, Stephan ;
Bourdel, Thomas ;
Koehl, Michael ;
Esslinger, Tilman .
NATURE, 2007, 450 (7167) :268-U8
[8]   Real-time observation of fluctuations at the driven-dissipative Dicke phase transition [J].
Brennecke, Ferdinand ;
Mottl, Rafael ;
Baumann, Kristian ;
Landig, Renate ;
Donner, Tobias ;
Esslinger, Tilman .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (29) :11763-11767
[9]  
Chaikin PM, 1995, PRINCIPLES CONDENSED
[10]   Cavity QED determination of atomic number statistics in optical lattices [J].
Chen, W. ;
Meiser, D. ;
Meystre, P. .
PHYSICAL REVIEW A, 2007, 75 (02)