ANALYSIS OF SOME SPLITTING SCHEMES FOR THE STOCHASTIC ALLEN-CAHN EQUATION

被引:38
作者
Brehier, Charles-Edouard [1 ]
Goudenege, Ludovic [2 ]
机构
[1] Univ Lyon, CNRS, Univ Claude Bernard Lyon 1, UMR5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Univ Paris Saclay, CNRS,FR3487, Federat Mathemat CentraleSupelec, CentraleSupelec, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 08期
关键词
Stochastic partial differential equations; splitting schemes; Allen-Cahn equation; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT DISCRETIZATION; STRONG-CONVERGENCE; NUMERICAL APPROXIMATIONS; LATTICE APPROXIMATIONS; IMPLICIT SCHEME; LEVEL SETS; UP METHOD; TIME; SPDES;
D O I
10.3934/dcdsb.2019077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze an explicit time discretization scheme for the one-dimensional stochastic Allen-Cahn, driven by space-time white noise. The scheme is based on a splitting strategy, and uses the exact solution for the nonlinear term contribution. We first prove boundedness of moments of the numerical solution. We then prove strong convergence results: first, L-2(Omega)-convergence of order almost 1/4, localized on an event of arbitrarily large probability, then convergence in probability of order almost 1/4. The theoretical analysis is supported by numerical experiments, concerning strong and weak orders of convergence.
引用
收藏
页码:4169 / 4190
页数:22
相关论文
共 62 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[3]  
[Anonymous], ARXIV160402053
[4]  
[Anonymous], ARXIV150403523
[5]  
Anton R., 2016, IMA J NUMER ANAL, V36, P400
[6]  
Becker S., 2017, ARXIV171102423
[7]   Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations [J].
Becker, Sebastian ;
Jentzen, Arnulf .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) :28-69
[8]  
Bessaih H., 2014, Stoch. Partial Differ. Equ. Anal. Comput., V2, P433
[9]  
Bessaih H., 2018, ARXIV180103548
[10]  
Brehier Charles-Edouard, 2015, ESAIM: Proceedings and Surveys, V48, P364, DOI 10.1051/proc/201448017