Minimal graphs in PSL2(R) over unbounded domains

被引:8
作者
Melo, Sofia [1 ]
机构
[1] Univ Fed Juiz de Fora, Dept Matemat ICE, BR-36036900 Juiz De Fora, MG, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2014年 / 45卷 / 01期
关键词
minimal graphs; unbounded domains; Dirichlet Problem; BOUNDARY-VALUE-PROBLEMS; HARMONIC DIFFEOMORPHISMS; SURFACES;
D O I
10.1007/s00574-014-0042-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of minimal graphs in PSL2(R) with prescribed boundary data, possibly infinite. We give necessary and sufficient conditions on the "lengths" of the sides of the inscribed polygons in an unbounded domain in a"i(2), that yield solutions to the minimal surface equation with prescribed boundary data.
引用
收藏
页码:91 / 116
页数:26
相关论文
共 17 条
[1]   Construction of harmonic diffeomorphisms and minimal graphs [J].
Collin, Pascal ;
Rosenberg, Harold .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1879-1906
[2]  
Daniel B, 2007, COMMENT MATH HELV, V82, P87
[3]  
Folha A, 2011, PAC J MATH, V251, P36
[4]   MINIMAL SURFACES AND HARMONIC DIFFEOMORPHISMS FROM THE COMPLEX PLANE ONTO CERTAIN HADAMARD SURFACES [J].
Galvez, Jose A. ;
Rosenberg, Harold .
AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (05) :1249-1273
[5]  
Hauswirth L, 2009, AM J MATH, V131, P195
[6]  
JENKINS H, 1966, ARCH RATION MECH AN, V21, P321
[7]   Removable singularities for sections of Riemannian submersions of prescribed mean curvature [J].
Leandro, Claudemir ;
Rosenberg, Harold .
BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (04) :445-452
[8]   The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface [J].
Mazet, L. ;
Rodriguez, M. M. ;
Rosenberg, H. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 :985-1023
[9]  
Mazet L., 2004, THESIS U TOULOUSE II
[10]   Minimal surfaces in H2 x R [J].
Nelli, B ;
Rosenberg, H .
BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2002, 33 (02) :263-292