Optimal asymptotic quadratic errors of density estimators on random fields

被引:7
作者
Biau, G [1 ]
机构
[1] Univ Paris 06, Lab Stat Theor & Appl, F-75013 Paris, France
关键词
kernel density estimation; random field; optimality; mixing;
D O I
10.1016/S0167-7152(02)00305-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Z(N) denote the integer lattice points in the N-dimensional Euclidean space. Kernel estimation of the multivariate density of a random field indexed by ZN is investigated. The loss between the estimator and the unknown density is measured by means of mean squared and mean integrated squared errors. Under mild mixing conditions, we show that the kernel density estimator has exactly the same asymptotic error as in the i.i.d. case. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1995, RANDOM FIELDS NETWOR
[2]  
Billingsley P., 1986, PROBABILITY MEASURE
[3]   OPTIMAL ASYMPTOTIC QUADRATIC ERROR OF DENSITY ESTIMATORS FOR STRONG MIXING OR CHAOTIC DATA [J].
BOSQ, D .
STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) :339-347
[4]  
Bosq D., 1987, THEORIE ESTIMATION F
[5]  
Bosq D., 1998, NONPARAMETRIC STAT S, V110, P210
[6]   Kernel density estimation for random fields (density estimation for random fields) [J].
Carbon, M ;
Tran, LT ;
Wu, B .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) :115-125
[7]  
CARBON M, 1996, NONPARAMETRIC STAT, V6, P157
[8]  
DELYON B, 1990, LIMIT THEOREMS MIXIN, P546
[9]  
Devroye L., 1987, A course in density estimation
[10]  
Doukhan P., 1994, MIXING PROPERTIES EX