Chiral light-matter interactions using spin-valley states in transition metal dichalcogenides

被引:27
作者
Yang, Zhili [1 ]
Aghaeimeibodi, Shahriar [1 ]
Waks, Edo [1 ,2 ,3 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] NIST, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
MONOLAYER WSE2; SINGLE PHOTONS; QUANTUM DOTS; EMITTERS; EXCITONS;
D O I
10.1364/OE.27.021367
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Chiral light-matter interactions can enable polarization to control the direction of light emission in a photonic device. Most realizations of chiral light-matter interactions require external magnetic fields to break time-reversal symmetry of the emitter. One way to eliminate this requirement is to utilize strong spin-orbit coupling present in transition metal dichalcogenides that exhibit a valley-dependent polarized emission. Such interactions were previously reported using plasmonic waveguides, but these structures exhibit short propagation lengths due to loss. Chiral dielectric structures exhibit much lower loss levels and could therefore solve this problem. We demonstrate chiral light-matter interactions using spin-valley states of transition metal dichalcogenide monolayers coupled to a dielectric waveguide. We use a photonic crystal glide-plane waveguide that exhibits chiral modes with high field intensity, coupled to monolayer WSe2. We show that the circularly polarized emission of the monolayer preferentially couples to one direction of the waveguide, with a directionality as high as 0.35, limited by the polarization purity of the bare monolayer emission. This system enables on-chip directional control of light and could provide new ways to control spin and valley degrees of freedom in a scalable photonic platform. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:21367 / 21379
页数:13
相关论文
共 41 条
[1]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[2]   Isolation and characterization of few-layer black phosphorus [J].
Castellanos-Gomez, Andres ;
Vicarelli, Leonardo ;
Prada, Elsa ;
Island, Joshua O. ;
Narasimha-Acharya, K. L. ;
Blanter, Sofya I. ;
Groenendijk, Dirk J. ;
Buscema, Michele ;
Steele, Gary A. ;
Alvarez, J. V. ;
Zandbergen, Henny W. ;
Palacios, J. J. ;
van der Zant, Herre S. J. .
2D MATERIALS, 2014, 1 (02)
[3]   Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons [J].
Chervy, Thibault ;
Azzini, Stefano ;
Lorchat, Etienne ;
Wang, Shaojun ;
Gorodetski, Yuri ;
Hutchison, James A. ;
Berciaud, Stephane ;
Ebbesen, Thomas W. ;
Genet, Cyriaque .
ACS PHOTONICS, 2018, 5 (04) :1281-1287
[4]   Vapor-transport growth of high optical quality WSe2 monolayers [J].
Clark, Genevieve ;
Wu, Sanfeng ;
Rivera, Pasqual ;
Finney, Joseph ;
Nguyen, Paul ;
Cobden, David H. ;
Xu, Xiaodong .
APL MATERIALS, 2014, 2 (10)
[5]   Nanoscale chiral valley-photon interface through optical spin-orbit coupling [J].
Gong, Su-Hyun ;
Alpeggiani, Filippo ;
Sciacca, Beniamino ;
Garnett, Erik C. ;
Kuipers, L. .
SCIENCE, 2018, 359 (6374) :443-+
[6]  
He YM, 2015, NAT NANOTECHNOL, V10, P497, DOI [10.1038/nnano.2015.75, 10.1038/NNANO.2015.75]
[7]   Probing the origin of excitonic states in monolayer WSe2 [J].
Huang, Jiani ;
Hoang, Thang B. ;
Mikkelsen, Maiken H. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Large-Area Synthesis of Highly Crystalline WSe2 Mono layers and Device Applications [J].
Huang, Jing-Kai ;
Pu, Jiang ;
Hsu, Chang-Lung ;
Chiu, Ming-Hui ;
Juang, Zhen-Yu ;
Chang, Yung-Huang ;
Chang, Wen-Hao ;
Iwasa, Yoshihiro ;
Takenobu, Taishi ;
Li, Lain-Jong .
ACS NANO, 2014, 8 (01) :923-930
[9]   Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures [J].
Johnson, Alex D. ;
Cheng, Fei ;
Tsai, Yutsung ;
Shih, Chih-Kang .
NANO LETTERS, 2017, 17 (07) :4317-4322
[10]  
Jones AM, 2013, NAT NANOTECHNOL, V8, P634, DOI [10.1038/NNANO.2013.151, 10.1038/nnano.2013.151]