Graded Galerkin Methods for the High-Order Convection-Diffusion Problem

被引:4
作者
Liu, Song-Tao [1 ]
Xu, Yuesheng [2 ]
机构
[1] Wachovia Secur, Fixed Income Analyt Grp, New York, NY 10152 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
convection-diffusion problem; galerkin method; graded mesh; hermite spline; optimal order of uniform convergence; singular perturbation; BOUNDARY-VALUE-PROBLEMS; FINITE-ELEMENT METHODS; INTEGRAL-EQUATIONS; APPROXIMATION; SPLINES; MESH;
D O I
10.1002/num.20396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a Galerkin method using the Hermite spline oil ail admissible graded mesh for solving the high-order singular perturbation problem of the convection-diffusion type. We identify a special function class to which the solution of the convection-diffusion problem belongs and characterize the approximation order of the Hermite spline for such a function class. The approximation order is then used to establish the optimal order of uniform convergence for the Galerkin method. Numerical results are presented to confirm the theoretical estimate. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 1261-1282,2009
引用
收藏
页码:1261 / 1282
页数:22
相关论文
共 22 条
[1]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[2]  
Brenner S. C., 2007, MATH THEORY FINITE E
[3]   A hybrid collocation method for Volterra integral equations with weakly singular kernels [J].
Cao, YZ ;
Herdman, T ;
Xu, YH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :364-381
[4]  
CHEN L, 2004, STABILITY ACCURACY A
[5]  
CHEN Z, 2000, LECT NOTES SCI COMPU, P31
[6]   CONTROLLED APPROXIMATION AND A CHARACTERIZATION OF THE LOCAL APPROXIMATION ORDER [J].
DEBOOR, C ;
JIA, RQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (04) :547-553
[7]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[8]  
Huang Min, 2006, J. Integral Equations Appl., V18, P83
[9]   Wavelet bases of Hermite cubic splines on the interval [J].
Jia, RQ ;
Liu, ST .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) :23-39
[10]   GAUSS-TYPE QUADRATURES FOR WEAKLY SINGULAR-INTEGRALS AND THEIR APPLICATION TO FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
KANEKO, H ;
XU, YS .
MATHEMATICS OF COMPUTATION, 1994, 62 (206) :739-753