Twin n-point boundary value problems

被引:14
作者
Anderson, DR [1 ]
机构
[1] Concordia Coll, Dept Math & Comp Sci, Moorhead, MN 56562 USA
关键词
time scales; dynamic equations; boundary value problem; delta-nabla equations;
D O I
10.1016/j.aml.2004.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of positive solutions to twin time-scale problems given by the dynamic equation -uDeltadel (t) = etaa(t) f (u(t)), t is an element of (t(1), t(n)) subset of T, with boundary conditions [GRAPHICS] using a functional-type cone expansion-compression fixed-point theorem. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1053 / 1059
页数:7
相关论文
共 11 条
[1]  
Anderson DR, 2003, DYNAM SYST APPL, V12, P393
[2]   Solutions to second-order three-point problems on time scales [J].
Anderson, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (08) :673-688
[3]   Fixed point theorem of cone expansion and compression of functional type [J].
Anderson, DR ;
Avery, RI .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (11) :1073-1083
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[6]   Solvability of m-point boundary value problems with nonlinear growth [J].
Feng, W ;
Webb, JRL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :467-480
[7]   On an m-point boundary value problem [J].
Feng, WY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) :5369-5374
[8]   Positive solutions for second-order m-point boundary value problems [J].
Guo, YP ;
Shan, WR ;
Ge, WG .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 151 (02) :415-424
[9]   A generalized multi-point boundary value problem for second order ordinary differential equations [J].
Gupta, CP .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 89 (1-3) :133-146
[10]   Existence theorems for a second order m-point boundary value problem [J].
Ma, RY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (02) :545-555