Enhanced hydrogen storage properties of high-loading nanoconfined LiBH4-Mg(BH4)2 composites with porous hollow carbon nanospheres

被引:43
作者
Zheng, Jiaguang [1 ,2 ,3 ]
Yao, Zhendong [1 ,2 ]
Xiao, Xuezhang [1 ,2 ]
Wang, Xuancheng [1 ,2 ]
He, Jiahuan [1 ,2 ]
Chen, Man [1 ,2 ]
Cheng, Hao [1 ,2 ]
Zhang, Liuting [3 ]
Chen, Lixin [1 ,2 ,4 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212003, Jiangsu, Peoples R China
[4] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310013, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Mg(BH4)(2); LiBH4; Nanoconfinement; Hollow carbon nanospheres; DUAL-CATION LI; FACILE SYNTHESIS; LIBH4; MG(BH4)(2); CONFINEMENT; DESORPTION; BOROHYDRIDES; MGH2; DESTABILIZATION; REVERSIBILITY;
D O I
10.1016/j.ijhydene.2020.09.177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel porous hollow carbon nanospheres (HCNS) have been synthesized and utilized as scaffold for LiBH4-Mg(BH4)(2) eutectic borohydride (LMBH). Large loading amounts of LMBH (33, 50 and 67 wt%) have been melt-infiltrated into HCNS, and the significantly improved dehydrogenation properties have been discovered. The LMBH@HCNS composites not only exhibit high actual dehydrogenation amounts and fast hydrogen desorption rates, but also an increased reversible hydrogen storage capacities after three cycles without obvious degradation. Further structural tests have revealed that the over-infiltrated LMBH covering the spherical surface of HCNS could also contribute to the improved hydrogen storage behaviors, due to a strong interfacial adhesion effect that avoid LMBH from aggregation during de/rehydrogenation cycles. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:852 / 864
页数:13
相关论文
共 56 条
[41]   2LiBH4-MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage [J].
Utke, Rapee ;
Thiangviriya, Sophida ;
Javadian, Payam ;
Jensen, Torben R. ;
Milanese, Chiara ;
Klassen, Thomas ;
Dornheim, Martin .
MATERIALS CHEMISTRY AND PHYSICS, 2016, 169 :136-141
[42]   Spectroscopic and Structural Characterization of Thermal Decomposition of γ-Mg(BH4)2: Dynamic Vacuum versus H2 Atmosphere [J].
Vitillo, Jenny G. ;
Bordiga, Silvia ;
Baricco, Marcell .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (45) :25340-25351
[43]   Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives [J].
von Colbe, Jose Bellosta ;
Ares, Jose-Ramon ;
Barale, Jussara ;
Baricco, Marcello ;
Buckley, Craig ;
Capurso, Giovanni ;
Gallandat, Noris ;
Grant, David M. ;
Guzik, Matylda N. ;
Jacob, Isaac ;
Jensen, Emil H. ;
Jensen, Torben ;
Jepsen, Julian ;
Klassen, Thomas ;
Lototskyy, Mykhaylol V. ;
Manickam, Kandavel ;
Montone, Amelia ;
Puszkiel, Julian ;
Sartori, Sabrina ;
Sheppard, Drew A. ;
Stuart, Alastair ;
Walker, Gavin ;
Webb, Colin J. ;
Yang, Heena ;
Yartys, Volodymyr ;
Zuttel, Andreas ;
Dornheim, Martin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) :7780-7808
[44]   In-situ synthesis of amorphous Mg(BH4)2 and chloride composite modified by NbF5 for superior reversible hydrogen storage properties [J].
Wang, Xuancheng ;
Xiao, Xuezhang ;
Zheng, Jiaguang ;
Huang, Xu ;
Chen, Man ;
Chen, Lixin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (03) :2044-2053
[45]   Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage [J].
Xu, Fei ;
Tang, Zhiwei ;
Huang, Siqi ;
Chen, Luyi ;
Liang, Yeru ;
Mai, Weicong ;
Zhong, Hui ;
Fu, Ruowen ;
Wu, Dingcai .
NATURE COMMUNICATIONS, 2015, 6
[46]   Enhanced dehydrogenation performance of LiBH4 by confinement in porous NiMnO3 microspheres [J].
Xu, Xiaohong ;
Zang, Lei ;
Zhao, Yaran ;
Liu, Yongchang ;
Wang, Yijing ;
Jiao, Lifang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (41) :25824-25830
[47]   The role of MgB12H12 in the hydrogen desorption process of Mg(BH4)2 [J].
Yan, Yigang ;
Remhof, Arndt ;
Rentsch, Daniel ;
Zuettel, Andreas .
CHEMICAL COMMUNICATIONS, 2015, 51 (04) :700-702
[48]   Functions of MgH2 in the Hydrogen Storage Properties of a Na3AIH6-LiBH4 Composite [J].
Yap, F. A. Halim ;
Ismail, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (42) :23959-23967
[49]   Magnesium based materials for hydrogen based energy storage: Past, present and future [J].
Yartys, V. A. ;
Lototskyy, M. V. ;
Akiba, E. ;
Albert, R. ;
Antonov, V. E. ;
Ares, J. R. ;
Baricco, M. ;
Bourgeois, N. ;
Buckley, C. E. ;
von Colbe, J. M. Bellosta ;
Crivello, J. -C. ;
Cuevas, F. ;
Denys, R. V. ;
Dornheim, M. ;
Felderhoff, M. ;
Grant, D. M. ;
Hauback, B. C. ;
Humphries, T. D. ;
Jacob, I. ;
Jensen, T. R. ;
de Jongh, P. E. ;
Joubert, J. -M. ;
Kuzovnikov, M. A. ;
Latroche, M. ;
Paskevicius, M. ;
Pasquini, L. ;
Popilevsky, L. ;
Skripnyuk, V. M. ;
Rabkin, E. ;
Sofianos, M. V. ;
Stuart, A. ;
Walker, G. ;
Wang, Hui ;
Webb, C. J. ;
Zhu, Min .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) :7809-7859
[50]   Enhanced Hydrogen Storage Properties and Reversibility of LiBH4 Confined in Two-Dimensional Ti3C2 [J].
Zang, Lei ;
Sun, Weiyi ;
Liu, Song ;
Huang, Yike ;
Yuan, Huatang ;
Tao, Zhanliang ;
Wang, Yijing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19598-19604