The influence of size and composition on the creep of SnAgCu solder joints

被引:0
作者
Wiese, S. [1 ]
Roellig, M. [1 ]
Mueller, M. [1 ]
Rzepka, S. [2 ,3 ]
Nocke, K. [2 ,3 ]
Luhmann, C. [2 ,3 ]
Kraemer, F. [1 ]
Meier, K. [1 ]
Wolter, K. -J. [1 ]
机构
[1] Tech Univ Dresden, Elect Packaging Lab, D-8027 Dresden, Germany
[2] Qimonda Dresden GmbH & Co OHG, Dresden, Germany
[3] Tech Univ Dresden, IAVT, D-01062 Dresden, Germany
来源
ESTC 2006: 1ST ELECTRONICS SYSTEMINTEGRATION TECHNOLOGY CONFERENCE, VOLS 1 AND 2, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents creep data, that was gained on non eutectic SnAgCu-solder specimens with a variety of compositions. The non eutectic SnAgCu-Alloys were tested in different specimen sizes: bulk specimens, FBGA solder balls, flip chip solder joints. The results of the creep experiments show that both, solder alloy composition and solder joint size have a significant influence of the creep properties of the solder material. Bulk solder specimens have a rectangular cross section of 4mm X 3mm and contained the following alloys: Sn98Ag2, Sn97Ag3, Sn96Ag4, Sn97.5Ag2Cu0.5, Sn97.1Ag2Cu0.9, Sn98.8Ag2Cu1.2, Sn965Ag3Cu0.5, Sn96.1Ag3Cu0.9, Sn95.8Ag3Cu1.2, Sn96.9Ag3Au0.1. FBGA solder balls contained three non eutectic alloys with a content of 0,5% < Ag < 4% and 0,2% < Cu < 0,8%. Flip chip solder joints contained an eutectic Sn96.5Ag3.5 alloy and an non-eutectic SnAg alloy with Ag < 3%. Creep experiments have been carried out in a temperature range between T = 5 degrees C... 150 degrees C. The microstructures of the various solder specimens have been analysed to understand their differences in creep behavior.
引用
收藏
页码:912 / +
页数:3
相关论文
共 50 条
[31]   Dorn Creep Model and Finite Element Simulation of SnAgCu-CNT Solder Joints in FCBGA Device [J].
Zhang, Liang ;
Sun, Lei ;
Han, Lei ;
Guo, Yong-huan .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2014, 15 (05) :329-335
[32]   Creep-fatigue lifetime estimation of SnAgCu solder joints using an artificial neural network approach [J].
Chen, Tzu-Chia ;
Zhu, Wang-Wang ;
Jiao, Zi-Kun ;
Petrov, Aleksandr Mikhailovich .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (26) :5225-5231
[33]   A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints [J].
Peter Borgesen ;
Luke Wentlent ;
Sa’d Hamasha ;
Saif Khasawneh ;
Sam Shirazi ;
Debora Schmitz ;
Thaer Alghoul ;
Chris Greene ;
Liang Yin .
Journal of Electronic Materials, 2018, 47 :2526-2544
[34]   Thermal fatigue modelling for SnAgCu and SnPb solder joints [J].
Dudek, R ;
Walter, H ;
Doering, R ;
Michel, B .
THERMAL AND MECHANICAL SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS, 2004, :557-564
[35]   Durability analysis of SnAgCu solder joints for an aerospace application [J].
Lajimi, Amir M. ;
Cugnoni, Joel ;
Botsis, John .
WCECS 2008: ADVANCES IN ELECTRICAL AND ELECTRONICS ENGINEERING - IAENG SPECIAL EDITION OF THE WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, PROCEEDINGS, 2009, :131-+
[36]   A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints [J].
Borgesen, Peter ;
Wentlent, Luke ;
Hamasha, Sa'd ;
Khasawneh, Saif ;
Shirazi, Sam ;
Schmitz, Debora ;
Alghoul, Thaer ;
Greene, Chris ;
Yin, Liang .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (05) :2526-2544
[37]   Effect of Gold Content on the Reliability of SnAgCu Solder Joints [J].
Pan, Jianbiao ;
Silk, Julie ;
Powers, Mike ;
Hyland, Patrick .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2011, 1 (10) :1662-1669
[38]   Deformation characteristics and microstructural evolution of SnAgCu solder joints [J].
Reinikainen, TO ;
Marjamäki, P ;
Kivilahti, JK .
Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2005, :91-98
[39]   Low cycle fatigue behavior of SnAgCu solder joints [J].
Wang C. ;
Zhu Y. ;
Li X. ;
Gao R. .
Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2016, 45 (04) :829-835
[40]   Low Cycle Fatigue Behavior of SnAgCu Solder Joints [J].
Wang Chao ;
Zhu Yongxin ;
Li Xiaoyan ;
Gao Ruiting .
RARE METAL MATERIALS AND ENGINEERING, 2016, 45 (04) :828-834