The influence of size and composition on the creep of SnAgCu solder joints

被引:0
|
作者
Wiese, S. [1 ]
Roellig, M. [1 ]
Mueller, M. [1 ]
Rzepka, S. [2 ,3 ]
Nocke, K. [2 ,3 ]
Luhmann, C. [2 ,3 ]
Kraemer, F. [1 ]
Meier, K. [1 ]
Wolter, K. -J. [1 ]
机构
[1] Tech Univ Dresden, Elect Packaging Lab, D-8027 Dresden, Germany
[2] Qimonda Dresden GmbH & Co OHG, Dresden, Germany
[3] Tech Univ Dresden, IAVT, D-01062 Dresden, Germany
来源
ESTC 2006: 1ST ELECTRONICS SYSTEMINTEGRATION TECHNOLOGY CONFERENCE, VOLS 1 AND 2, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents creep data, that was gained on non eutectic SnAgCu-solder specimens with a variety of compositions. The non eutectic SnAgCu-Alloys were tested in different specimen sizes: bulk specimens, FBGA solder balls, flip chip solder joints. The results of the creep experiments show that both, solder alloy composition and solder joint size have a significant influence of the creep properties of the solder material. Bulk solder specimens have a rectangular cross section of 4mm X 3mm and contained the following alloys: Sn98Ag2, Sn97Ag3, Sn96Ag4, Sn97.5Ag2Cu0.5, Sn97.1Ag2Cu0.9, Sn98.8Ag2Cu1.2, Sn965Ag3Cu0.5, Sn96.1Ag3Cu0.9, Sn95.8Ag3Cu1.2, Sn96.9Ag3Au0.1. FBGA solder balls contained three non eutectic alloys with a content of 0,5% < Ag < 4% and 0,2% < Cu < 0,8%. Flip chip solder joints contained an eutectic Sn96.5Ag3.5 alloy and an non-eutectic SnAg alloy with Ag < 3%. Creep experiments have been carried out in a temperature range between T = 5 degrees C... 150 degrees C. The microstructures of the various solder specimens have been analysed to understand their differences in creep behavior.
引用
收藏
页码:912 / +
页数:3
相关论文
共 50 条
  • [1] Effects of Thermal Cycling on Creep of SnAgCu Solder Joints
    Alghoul, T.
    Wentlent, L.
    Sivasubramony, R.
    Greene, C.
    Thompson, P.
    Borgesen, P.
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2019, 9 (05): : 888 - 894
  • [2] Creep of thermally aged SnAgCu-solder joints
    Wiese, S.
    Wolter, K. -J.
    MICROELECTRONICS RELIABILITY, 2007, 47 (2-3) : 223 - 232
  • [3] Creep of eutectic SnAgCu in thermally treated solder joints
    Wiese, S
    Roellig, M
    Wolter, KJ
    55TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, VOLS 1 AND 2, 2005 PROCEEDINGS, 2005, : 1272 - 1281
  • [4] Creep of thermally aged SnAgCu-solder joints
    Wiese, S
    Roellig, M
    Wolter, KJ
    THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICRO-ELECTRONICS AND MICRO-SYSTEMS, 2005, : 79 - 85
  • [5] Microstructure, creep properties, and failure mechanism of SnAgCu solder joints
    Janne J. Sundelin
    Sami T. Nurmi
    Toivo K. Lepistö
    Eero O. Ristolainen
    Journal of Electronic Materials, 2006, 35 : 1600 - 1606
  • [6] Microstructure, creep properties, and failure mechanism of SnAgCu solder joints
    Sundelin, Janne J.
    Nurmi, Sami T.
    Lepisto, Toivo K.
    Ristolainen, Eero O.
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (07) : 1600 - 1606
  • [7] Effect of RE on creep rupture life of SnAgCu solder joints
    Wang, Yaoli
    Dong, Gaihong
    Li, Chenyang
    Wu, Zhiwei
    Sun, Jing
    FUNCTIONAL AND ELECTRONIC MATERIALS, 2011, 687 : 39 - +
  • [8] Early transient creep of single crystal SnAgCu solder joints
    Das, Ronit
    Thekkut, Sanoop
    Sivasubramony, Rajesh Sharma
    Alghoul, Thaer
    Mahmood, Atif
    Joshi, Shantanu
    Arroyo, Carlos
    Sharma, Gaurav
    Borgesen, Peter
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (17) : 13657 - 13667
  • [9] INDENTATION SIZE EFFECT ON THE CREEP BEHAVIOR OF A SnAgCu SOLDER
    Han, Y. D.
    Jing, H. Y.
    Nai, S. M. L.
    Xu, L. Y.
    Tan, C. M.
    Wei, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (1-2): : 267 - 275
  • [10] Early transient creep of single crystal SnAgCu solder joints
    Ronit Das
    Sanoop Thekkut
    Rajesh Sharma Sivasubramony
    Thaer Alghoul
    Atif Mahmood
    Shantanu Joshi
    Carlos Arroyo
    Gaurav Sharma
    Peter Borgesen
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 13657 - 13667