Long-range properties of spanning trees

被引:35
作者
Kenyon, R [1 ]
机构
[1] Univ Paris Sud, Lab Topol & Dynam, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1063/1.533190
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute some large-scale properties of the uniform spanning tree process on bounded regions in Z(2). In particular, we compute the distribution of the meeting point of the branches of the tree issued from three boundary points. We also compute the crossing probabilities of branches of the tree on rectangular and annular regions, as well as the winding number of the branches of the tree. (C) 2000 American Institute of Physics. [S0022-2488(00)00303-0].
引用
收藏
页码:1338 / 1363
页数:26
相关论文
共 17 条
[1]  
Ahlfors L. V., 1979, COMPLEX ANAL
[2]  
AIZENMANN M, IN PRESS RAND STR AL
[3]  
APOSTOL TM, 1990, MODULAR FUNCTIOSN DI
[4]  
BENJAMINI I, IN PRESS ANN PROBAB
[5]   LOCAL CHARACTERISTICS, ENTROPY AND LIMIT-THEOREMS FOR SPANNING-TREES AND DOMINO TILINGS VIA TRANSFER-IMPEDANCES [J].
BURTON, R ;
PEMANTLE, R .
ANNALS OF PROBABILITY, 1993, 21 (03) :1329-1371
[7]   EXACT PARTITION-FUNCTIONS AND CORRELATION-FUNCTIONS OF MULTIPLE HAMILTONIAN-WALKS ON THE MANHATTAN LATTICE [J].
DUPLANTIER, B ;
DAVID, F .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (3-4) :327-434
[8]   STATISTICS OF DIMERS ON A LATTICE .1. NUMBER OF DIMER ARRANGEMENTS ON A QUADRATIC LATTICE [J].
KASTELEYN, P .
PHYSICA, 1961, 27 (12) :1209-+
[9]  
Kasteleyn P.W., 1967, GRAPH THEORY THEORET
[10]   Local statistics of lattice dimers [J].
Kenyon, R .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (05) :591-618