Variational genetic algorithm for NP-hard scheduling problem solution

被引:19
作者
Diveev, A. I. [1 ,2 ]
Bobr, O. V. [1 ]
机构
[1] Peoples Friendship Univ Russia, Miklukho Maklaya Str 6, Moscow 117198, Russia
[2] Russian Acad Sci, Dorodnicyn Comp Ctr FRC Comp Sci & Control, Vavilova Str 40, Moscow 119333, Russia
来源
XII INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2016, (INTELS 2016) | 2017年 / 103卷
关键词
timetable; genetic algorithm; small variations of the basic solutions;
D O I
10.1016/j.procs.2017.01.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The article is devoted to the study of metaheuristic method for scheduling problems solution. The article describes genetic algorithm successfully applied to solve the problems. The article considers the model of a problem of an optimal timetable development, describes genetic algorithm applied to the problem. The results of the algorithm are provided. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:52 / 58
页数:7
相关论文
共 11 条
[1]  
Astakhova IF, 2013, SOSTAVLENIE RASPISAN, V2, P93
[2]  
Cormen T. H., 2009, Introduction to Algorithms
[3]   AN INTRODUCTION TO TIMETABLING [J].
DEWERRA, D .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 19 (02) :151-162
[4]  
Finkelstein Yu Yu, 1976, APPL METHODS APPL PR
[5]  
Gladkov L. A., 2010, Genetic Algorithms
[6]  
Klimenko AB, 2014, ESTESTVENNYE MATEMAT, V22
[7]   Curriculum based course timetabling: new solutions to Udine benchmark instances [J].
Lach, Gerald ;
Luebbecke, Marco E. .
ANNALS OF OPERATIONS RESEARCH, 2012, 194 (01) :255-272
[8]  
Lazarev AA, 2011, SCHEDULING THEORY PR
[9]  
Rudova H, 2005, P MISTA, P11
[10]  
Scheduling Wren A., 1995, PRACTICE THEORY AUTO, P46