Patch extensions and trajectory colorings of slim rectangular lattices

被引:15
作者
Czedli, Gabor [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
rectangular lattice; patch lattice; slim semimodular lattice; congruence lattice; lattice coloring; quasi-coloring; quasiordering; fork extension; multi-fork extension; patch extension; SEMIMODULAR LATTICES; DISTRIBUTIVE LATTICES; THEOREM;
D O I
10.1007/s00012-014-0294-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With the help of our new tools in the title, we give an efficient representation of the congruence lattice of a slim rectangular lattice by an easy-to-visualize quasiordering on the set of its meet-irreducible elements or, equivalently, on the set of its trajectories.
引用
收藏
页码:125 / 154
页数:30
相关论文
共 29 条
[1]  
[Anonymous], 2006, The Congruences of a Finite Lattice: A Proof-by-Picture Approach
[2]  
Czedli G., MATH SLOVACA UNPUB
[3]  
Czedli G., 2014, LATTICE THE IN PRESS
[4]  
Czedli G., ARXIV12063679
[5]  
Czedli G., ARXIV12126904
[6]   Finite convex geometries of circles [J].
Czedli, Gabor .
DISCRETE MATHEMATICS, 2014, 330 :61-75
[7]  
Czédli G, 2013, ACTA SCI MATH, V79, P369
[8]   Coordinatization of finite join-distributive lattices [J].
Czedli, Gabor .
ALGEBRA UNIVERSALIS, 2014, 71 (04) :385-404
[9]   Notes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices [J].
Czedli, Gabor ;
Graetzer, George .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (03) :847-858
[10]   Slim Semimodular Lattices. II. A Description by Patchwork Systems [J].
Czedli, Gabor ;
Schmidt, E. Tamas .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02) :689-721