Action Recognition by Fusing Spatial-Temporal Appearance and The Local Distribution of Interest Points

被引:0
|
作者
Lu, Mengmeng [1 ]
Zhang, Liang [1 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
来源
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION ENGINEERING | 2014年 / 111卷
关键词
Action recognition; BOW; SVM; Local spatio-temporal distribution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The traditional Bag of Words (BOW) algorithm considers the frequency of visual words only, whereas it ignores their spatial and temporal correlations. Many methods have been designed to remedy this defect. In this paper, we propose a new descriptor to describe the local spatio-temporal distribution information of each point. This new descriptor, combined with HOG3D, is used to describe human actions. K-means clustering algorithm is introduced to generate codebook of visual words, achieving the integration of two features under the BOW model. Finally, Support Vector Machine (SVM) is used for action recognition. We extensively test our method on the standard Weizmann and KTH action datasets. The results show its validity and good performance.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [41] A spatial-temporal iterative tensor decomposition technique for action and gesture recognition
    Su, Yuting
    Wang, Haiyi
    Jing, Peiguang
    Xu, Chuanzhong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (08) : 10635 - 10652
  • [42] Deep Fusion of Skeleton Spatial-Temporal and Dynamic Information for Action Recognition
    Gao, Song
    Zhang, Dingzhuo
    Tang, Zhaoming
    Wang, Hongyan
    SENSORS, 2024, 24 (23)
  • [43] A spatial-temporal iterative tensor decomposition technique for action and gesture recognition
    Yuting Su
    Haiyi Wang
    Peiguang Jing
    Chuanzhong Xu
    Multimedia Tools and Applications, 2017, 76 : 10635 - 10652
  • [44] Spatial-Temporal Exclusive Capsule Network for Open Set Action Recognition
    Feng, Yangbo
    Gao, Junyu
    Yang, Shicai
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9464 - 9478
  • [45] Smoking Action Recognition Based on Spatial-Temporal Convolutional Neural Networks
    Chiu, Chien-Fang
    Kuo, Chien-Hao
    Chang, Pao-Chi
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 1616 - 1619
  • [46] Recurrent attention network using spatial-temporal relations for action recognition
    Zhang, Mingxing
    Yang, Yang
    Ji, Yanli
    Xie, Ning
    Shen, Fumin
    SIGNAL PROCESSING, 2018, 145 : 137 - 145
  • [47] Spatial-temporal channel-wise attention network for action recognition
    Lin Chen
    Yungang Liu
    Yongchao Man
    Multimedia Tools and Applications, 2021, 80 : 21789 - 21808
  • [48] Spatial-temporal pyramid based Convolutional Neural Network for action recognition
    Zheng, Zhenxing
    An, Gaoyun
    Wu, Dapeng
    Ruan, Qiuqi
    NEUROCOMPUTING, 2019, 358 : 446 - 455
  • [49] Spatial-Temporal context for action recognition combined with confidence and contribution weight
    Xu, Wanru
    Miao, Zhenjiang
    Zhang, Jian
    Zhang, Qiang
    Wu, Hao
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 576 - 580
  • [50] STAP: Spatial-Temporal Attention-Aware Pooling for Action Recognition
    Nguyen, Tam V.
    Song, Zheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (01) : 77 - 86