Action Recognition by Fusing Spatial-Temporal Appearance and The Local Distribution of Interest Points

被引:0
|
作者
Lu, Mengmeng [1 ]
Zhang, Liang [1 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
来源
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION ENGINEERING | 2014年 / 111卷
关键词
Action recognition; BOW; SVM; Local spatio-temporal distribution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The traditional Bag of Words (BOW) algorithm considers the frequency of visual words only, whereas it ignores their spatial and temporal correlations. Many methods have been designed to remedy this defect. In this paper, we propose a new descriptor to describe the local spatio-temporal distribution information of each point. This new descriptor, combined with HOG3D, is used to describe human actions. K-means clustering algorithm is introduced to generate codebook of visual words, achieving the integration of two features under the BOW model. Finally, Support Vector Machine (SVM) is used for action recognition. We extensively test our method on the standard Weizmann and KTH action datasets. The results show its validity and good performance.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [21] Spatial-Temporal Interleaved Network for Efficient Action Recognition
    Jiang, Shengqin
    Zhang, Haokui
    Qi, Yuankai
    Liu, Qingshan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) : 178 - 187
  • [22] Unsupervised anomalous behavior detection using spatial-temporal interest points
    Zhu, Xudong
    Liu, Zhijing
    ICIC Express Letters, 2011, 5 (03): : 655 - 660
  • [23] Spatial-temporal saliency action mask attention network for action recognition
    Jiang, Min
    Pan, Na
    Kong, Jun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [24] Convolutional non-local spatial-temporal learning for multi-modality action recognition
    Ren, Ziliang
    Yuan, Huaqiang
    Wei, Wenhong
    Zhao, Tiezhu
    Zhang, Qieshi
    ELECTRONICS LETTERS, 2022, 58 (20) : 765 - 767
  • [25] Hierarchy Spatial-Temporal Transformer for Action Recognition in Short Videos
    Cai, Guoyong
    Cai, Yumeng
    FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 760 - 774
  • [26] Action Recognition Based on Spatial-Temporal Pyramid Sparse Coding
    Zhang, Xiaojing
    Zhang, Hua
    Cao, Xiaochun
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1455 - 1458
  • [27] ACTION DETECTION USING MULTIPLE SPATIAL-TEMPORAL INTEREST POINT FEATURES
    Cao, Liangliang
    Tian, YingLi
    Liu, Zicheng
    Yao, Benjamin
    Zhang, Zhengyou
    Huang, Thomas S.
    2010 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2010), 2010, : 340 - 345
  • [28] Hierarchical Spatial-Temporal Masked Contrast for Skeleton Action Recognition
    Cao, Wenming
    Zhang, Aoyu
    He, Zhihai
    Zhang, Yicha
    Yin, Xinpeng
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 5801 - 5814
  • [29] Multi-Branch Spatial-Temporal Network for Action Recognition
    Wang, Yingying
    Li, Wei
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (10) : 1556 - 1560
  • [30] Action Recognition Using a Spatial-Temporal Network for Wild Felines
    Feng, Liqi
    Zhao, Yaqin
    Sun, Yichao
    Zhao, Wenxuan
    Tang, Jiaxi
    ANIMALS, 2021, 11 (02): : 1 - 18