Action Recognition by Fusing Spatial-Temporal Appearance and The Local Distribution of Interest Points

被引:0
|
作者
Lu, Mengmeng [1 ]
Zhang, Liang [1 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
来源
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION ENGINEERING | 2014年 / 111卷
关键词
Action recognition; BOW; SVM; Local spatio-temporal distribution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The traditional Bag of Words (BOW) algorithm considers the frequency of visual words only, whereas it ignores their spatial and temporal correlations. Many methods have been designed to remedy this defect. In this paper, we propose a new descriptor to describe the local spatio-temporal distribution information of each point. This new descriptor, combined with HOG3D, is used to describe human actions. K-means clustering algorithm is introduced to generate codebook of visual words, achieving the integration of two features under the BOW model. Finally, Support Vector Machine (SVM) is used for action recognition. We extensively test our method on the standard Weizmann and KTH action datasets. The results show its validity and good performance.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [11] Skeleton-based action recognition with local dynamic spatial-temporal aggregation
    Hu, Lianyu
    Liu, Shenglan
    Feng, Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [12] Local and Global Spatial-Temporal Transformer for skeleton-based action recognition
    Liu, Ruyi
    Chen, Yu
    Gai, Feiyu
    Liu, Yi
    Miao, Qiguang
    Wu, Shuai
    NEUROCOMPUTING, 2025, 634
  • [13] Evaluation of local spatial-temporal features for cross-view action recognition
    Gao, Zan
    Nie, Weizhi
    Liu, Anan
    Zhang, Hua
    NEUROCOMPUTING, 2016, 173 : 110 - 117
  • [14] Action Recognition by Joint Spatial-Temporal Motion Feature
    Zhang, Weihua
    Zhang, Yi
    Gao, Chaobang
    Zhou, Jiliu
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [15] Spatial-Temporal Convolutional Attention Network for Action Recognition
    Luo, Huilan
    Chen, Han
    Computer Engineering and Applications, 2023, 59 (09): : 150 - 158
  • [16] Spatial-Temporal Pyramid Graph Reasoning for Action Recognition
    Geng, Tiantian
    Zheng, Feng
    Hou, Xiaorong
    Lu, Ke
    Qi, Guo-Jun
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5484 - 5497
  • [17] Spatial-Temporal Separable Attention for Video Action Recognition
    Guo, Xi
    Hu, Yikun
    Chen, Fang
    Jin, Yuhui
    Qiao, Jian
    Huang, Jian
    Yang, Qin
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 224 - 228
  • [18] Action recognition with spatial-temporal discriminative filter banks
    Martinez, Brais
    Modolo, Davide
    Xiong, Yuanjun
    Tighe, Joseph
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5481 - 5490
  • [19] Grouped Spatial-Temporal Aggregation for Efficient Action Recognition
    Luo, Chenxu
    Yuille, Alan
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5511 - 5520
  • [20] Select and Focus: Action Recognition with Spatial-Temporal Attention
    Chan, Wensong
    Tian, Zhiqiang
    Liu, Shuai
    Ren, Jing
    Lan, Xuguang
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 : 461 - 471