On the Cauchy problem for the derivative nonlinear Schrodinger equation with periodic boundary condition

被引:1
作者
Herr, Sebastian [1 ]
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the Cauchy problem associated to the derivative nonlinear Schrodinger equation partial derivative(t)u - i partial derivative(2)(x)u = lambda partial derivative(x)(vertical bar u vertical bar(2)u) is locally well-posed for initial data u(0) is an element of H-s(T), if s >= 1/2 and. is real. The proof is based on a variant of the gauge transformation, introduced by Hayashi and Ozawa, adjusted to the periodic setting and sharp multilinear estimates for the gauge equivalent equation in Fourier restriction norm spaces. By the use of a conservation law, the problem is shown to be globally well-posed for s >= 1 and data which is small in L-2.
引用
收藏
页数:33
相关论文
共 21 条
[1]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[2]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[4]  
CAZENAVE T, 1998, OXFORD SERIES MATH I, V13
[5]   THE INITIAL BOUNDARY-VALUE PROBLEM FOR A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
CHEN, YM .
ACTA MATHEMATICA SCIENTIA, 1986, 6 (04) :405-418
[6]  
Christ M., ILLPOSEDNESS SCHRODI
[7]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[8]   Multilinear estimates for periodic KdV equations, and applications [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (01) :173-218
[9]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[10]  
Ginibre J, 1996, ASTERISQUE, P163