Identifying Breast Cancer Subtype Related miRNAs from Two Constructed miRNAs Interaction Networks in Silico Method

被引:69
作者
Hua, Lin [1 ]
Li, Lin [1 ]
Zhou, Ping [1 ]
机构
[1] Capital Med Univ, Inst Biomed Engn, Beijing 100069, Peoples R China
基金
中国国家自然科学基金;
关键词
TOPOLOGICAL PROPERTIES; MICRORNA; PREDICTION; TARGETS; CLASSIFICATION; IDENTIFICATION; DEREGULATION; SIMILARITY; SIGNATURES; INVASION;
D O I
10.1155/2013/798912
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background. It has been known that microRNAs (miRNAs) regulate the expression of multiple proteins and therefore are likely to emerge as more effective targets of selective therapeutic modalities for breast cancer. Although recent lines of evidence have approved that miRNAs are associated with the most common molecular breast cancer subtypes, the studies to breast cancer subtypes have not been well characterized. Objectives. In this study, we propose a silico method to identify breast cancer subtype related miRNAs based on two constructed miRNAs interaction networks using miRNA-mRNA dual expression profiling data arising from the same samples. Methods. Firstly, we used a new mutual information estimation method to construct two miRNAs interaction networks based on miRNA-mRNA dual expression profiling data. Secondly, we compared and analyzed the topological properties of these two networks. Finally, miRNAs showing the outstanding topological properties in both of the two networks were identified. Results. Further functional analysis and literature evidence confirm that the identified potential breast cancer subtype related miRNAs are essential to unraveling their biological function. Conclusions. This study provides a new silico method to predict candidate miRNAs of breast cancer subtype from a system biology level and can help exploit for functional studies of important breast cancer subtype related miRNAs.
引用
收藏
页数:13
相关论文
共 53 条
[1]  
Ahmad Aamir, 2013, ISRN Oncol, V2013, P290568, DOI 10.1155/2013/290568
[2]  
[Anonymous], J INTEGRATED OMICS
[3]   DNA methylation epigenotypes in breast cancer molecular subtypes [J].
Bediaga, Naiara G. ;
Acha-Sagredo, Amelia ;
Guerra, Isabel ;
Viguri, Amparo ;
Albaina, Carmen ;
Ruiz Diaz, Irune ;
Rezola, Ricardo ;
Jesus Alberdi, Maria ;
Dopazo, Joaquin ;
Montaner, David ;
de Renobales, Mertxe ;
Fernandez, Agustin F. ;
Field, John K. ;
Fraga, Mario F. ;
Liloglou, Triantafillos ;
de Pancorbo, Marian M. .
BREAST CANCER RESEARCH, 2010, 12 (05)
[4]   MicroRNA signatures in human cancers [J].
Calin, George A. ;
Croce, Carlo M. .
NATURE REVIEWS CANCER, 2006, 6 (11) :857-866
[5]   Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study [J].
Carey, Lisa A. ;
Perou, Charles M. ;
Livasy, Chad A. ;
Dressler, Lynn G. ;
Cowan, David ;
Conway, Kathleen ;
Karaca, Gamze ;
Troester, Melissa A. ;
Tse, Chiu Kit ;
Edmiston, Sharon ;
Deming, Sandra L. ;
Geradts, Joseph ;
Cheang, Maggie C. U. ;
Nielsen, Torsten O. ;
Moorman, Patricia G. ;
Earp, H. Shelton ;
Millikan, Robert C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2006, 295 (21) :2492-2502
[6]   MTar: a computational microRNA target prediction architecture for human transcriptome [J].
Chandra, Vinod ;
Girijadevi, Reshmi ;
Nair, Achuthsankar S. ;
Pillai, Sreenadhan S. ;
Pillai, Radhakrishna M. .
BMC BIOINFORMATICS, 2010, 11
[7]   Circulating microRNAs in plasma as early detection markers for breast cancer [J].
Cuk, Katarina ;
Zucknick, Manuela ;
Heil, Joerg ;
Madhavan, Dharanija ;
Schott, Sarah ;
Turchinovich, Andrey ;
Arlt, Dorit ;
Rath, Michelle ;
Sohn, Christof ;
Benner, Axel ;
Junkermann, Hans ;
Schneeweiss, Andreas ;
Burwinkel, Barbara .
INTERNATIONAL JOURNAL OF CANCER, 2013, 132 (07) :1602-1612
[8]   Estimating mutual information using B-spline functions - an improved similarity measure for analysing gene expression data [J].
Daub, CO ;
Steuer, R ;
Selbig, J ;
Kloska, S .
BMC BIOINFORMATICS, 2004, 5 (1)
[9]   miRNA-mRNA Integrated Analysis Reveals Roles for miRNAs in Primary Breast Tumors [J].
Enerly, Espen ;
Steinfeld, Israel ;
Kleivi, Kristine ;
Leivonen, Suvi-Katri ;
Aure, Miriam R. ;
Russnes, Hege G. ;
Ronneberg, Jo Anders ;
Johnsen, Hilde ;
Navon, Roy ;
Rodland, Einar ;
Makela, Rami ;
Naume, Bjorn ;
Perala, Merja ;
Kallioniemi, Olli ;
Kristensen, Vessela N. ;
Yakhini, Zohar ;
Borresen-Dale, Anne-Lise .
PLOS ONE, 2011, 6 (02)
[10]   Concordance among gene-expression-based predictors for breast cancer [J].
Fan, Cheng ;
Oh, Daniel S. ;
Wessels, Lodewyk ;
Weigelt, Britta ;
Nuyten, Dimitry S. A. ;
Nobel, Andrew B. ;
van't Veer, Laura J. ;
Perou, Charles M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (06) :560-569