An efficient algorithm for pairwise local alignment of protein interaction networks

被引:0
作者
Chen, Wenbin [1 ,2 ,3 ]
Schmidt, Matthew
Tian, Wenhong [6 ]
Samatova, Nagiza F. [4 ,5 ]
Zhang, Shaohong [1 ]
机构
[1] Guangzhou Univ, Dept Comp Sci, Guangzhou Higher Educ Mega Ctr, 230 Wai Huan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China
[4] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
[5] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[6] Univ Elect & Technol China, Dept Comp Sci, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Network alignment; conserved functional modules; graph optimization; graph theory; FUNCTIONAL MODULES; GENE ONTOLOGY; IDENTIFICATION; COMPLEXES; YEAST; TOOL;
D O I
10.1142/S0219720015500031
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recently, researchers seeking to understand, modify, and create beneficial traits in organisms have looked for evolutionarily conserved patterns of protein interactions. Their conservation likely means that the proteins of these conserved functional modules are important to the trait's expression. In this paper, we formulate the problem of identifying these conserved patterns as a graph optimization problem, and develop a fast heuristic algorithm for this problem. We compare the performance of our network alignment algorithm to that of the MaWISh algorithm [Koyuturk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A, Pairwise alignment of protein interaction networks, J Comput Biol 13(2): 182-199, 2006.], which bases its search algorithm on a related decision problem formulation. We find that our algorithm discovers conserved modules with a larger number of proteins in an order of magnitude less time. The protein sets found by our algorithm correspond to known conserved functional modules at comparable precision and recall rates as those produced by the MaWISh algorithm.
引用
收藏
页数:14
相关论文
共 24 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes [J].
Boyle, EI ;
Weng, SA ;
Gollub, J ;
Jin, H ;
Botstein, D ;
Cherry, JM ;
Sherlock, G .
BIOINFORMATICS, 2004, 20 (18) :3710-3715
[4]  
Charikar M., 2000, Approximation Algorithms for Combinatorial Optimization. Third International Workshop, APPROX 2000. Proceedings (Lecture Notes in Computer Science Vol.1913), P84
[5]  
Chen W, 2009, INT C BIOINF COMP BI, P816
[6]   AlignNemo: A Local Network Alignment Method to Integrate Homology and Topology [J].
Ciriello, Giovanni ;
Mina, Marco ;
Guzzi, Pietro H. ;
Cannataro, Mario ;
Guerra, Concettina .
PLOS ONE, 2012, 7 (06)
[7]   The use of edge-betweenness clustering to investigate biological function in protein interaction networks [J].
Dunn, R ;
Dudbridge, F ;
Sanderson, CM .
BMC BIOINFORMATICS, 2005, 6 (1)
[8]   An efficient algorithm for large-scale detection of protein families [J].
Enright, AJ ;
Van Dongen, S ;
Ouzounis, CA .
NUCLEIC ACIDS RESEARCH, 2002, 30 (07) :1575-1584
[9]   The dense k-subgraph problem [J].
Feige, U ;
Kortsarz, G ;
Peleg, D .
ALGORITHMICA, 2001, 29 (03) :410-421
[10]  
Flannick J, 2008, LECT N BIOINFORMAT, V4955, P214