Noncommutativity, Saez-Ballester Theory and Kinetic Inflation

被引:10
作者
Rasouli, S. M. M. [1 ,2 ]
机构
[1] Univ Beira Interior, Ctr Matemat & Aplicacoes CMA UBI, Dept Fis, Rua Marques dAvila & Bolama, P-6200001 Covilha, Portugal
[2] Islamic Azad Univ, Dept Phys, Qazvin Branch, Qazvin 341851416, Iran
关键词
kinetic inflation; deformed phase space; noncommutativity; scalar tensor theories; Saez-Ballester theory; dynamical analysis; Starobinsky inflationary model; SCALAR-TENSOR THEORY; COSMOLOGICAL MODELS; UNIVERSE;
D O I
10.3390/universe8030165
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents a noncommutative (NC) version of an extended Saez-Ballester (SB) theory. Concretely, considering the spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, we propose an appropriate dynamical deformation between the conjugate momenta and, applying the Hamiltonian formalism, obtain deformed equations of motion. In our model, the NC parameter appears linearly in the deformed Poisson bracket and the equations of the NC SB cosmology. When it goes to zero, we get the corresponding commutative counterparts. Even by restricting our attention to a particular case, where there is neither an ordinary matter nor a scalar potential, we show that the effects of the noncommutativity provide interesting results: applying numerical endeavors for very small values of the NC parameter, we show that (i) at the early times of the universe, there is an inflationary phase with a graceful exit, for which the relevant nominal condition is satisfied; (ii) for the late times, there is a zero acceleration epoch. By establishing an appropriate dynamical framework, we show that the results (i) and (ii) can be obtained for many sets of the initial conditions and the parameters of the model. Finally, we indicate that, at the level of the field equations, one may find a close resemblance between our NC model and the Starobinsky inflationary model.
引用
收藏
页数:13
相关论文
共 48 条
  • [1] Quantum gravity phenomenology at the dawn of the multi-messenger era-A review
    Addazi, A.
    Alvarez-Muniz, J.
    Alves Batista, R.
    Amelino-Camelia, G.
    Antonelli, V
    Arzano, M.
    Asorey, M.
    Atteia, J-L
    Bahamonde, S.
    Bajardi, F.
    Ballesteros, A.
    Baret, B.
    Barreiros, D. M.
    Basilakos, S.
    Benisty, D.
    Birnholtz, O.
    Blanco-Pillado, J. J.
    Blas, D.
    Bolmont, J.
    Boncioli, D.
    Bosso, P.
    Calcagni, G.
    Capozziello, S.
    Carmona, J. M.
    Cerci, S.
    Chernyakova, M.
    Clesse, S.
    Coelho, J. A. B.
    Colak, S. M.
    Cortes, J. L.
    Das, S.
    D'Esposito, V
    Demirci, M.
    Di Luca, M. G.
    di Matteo, A.
    Dimitrijevic, D.
    Djordjevic, G.
    Prester, D. Dominis
    Eichhorn, A.
    Ellis, J.
    Escamilla-Rivera, C.
    Fabiano, G.
    Franchino-Vinas, S. A.
    Frassino, A. M.
    Frattulillo, D.
    Funk, S.
    Fuster, A.
    Gamboa, J.
    Gent, A.
    Gergely, L. A.
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2022, 125
  • [2] Noncommutative geometry and cosmology
    Barbosa, GD
    Pinto-Neto, N
    [J]. PHYSICAL REVIEW D, 2004, 70 (10): : 103512 - 1
  • [3] 3-DIMENSIONAL CLASSICAL SPACETIMES
    BARROW, JD
    BURD, AB
    LANCASTER, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (04) : 551 - 567
  • [4] Quantum cosmology: a review
    Bojowald, Martin
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (02)
  • [5] The conformal status of ω=-3/2 Brans-Dicke cosmology
    Dabrowski, Mariusz P.
    Denkiewicz, Tomasz
    Blaschke, David B.
    [J]. ANNALEN DER PHYSIK, 2007, 16 (04) : 237 - 257
  • [6] Universality of Quantum Gravity Corrections
    Das, Saurya
    Vagenas, Elias C.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [7] On quantum mechanics on noncommutative quantum phase space
    Djemaï, AEF
    Smail, H
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 837 - 844
  • [8] Twisted covariant noncommutative self-dual gravity
    Estrada-Jimenez, S.
    Garcia-Compean, H.
    Obregon, O.
    Ramirez, C.
    [J]. PHYSICAL REVIEW D, 2008, 78 (12):
  • [9] Faraoni V., 2004, COSMOLOGY SCALAR TEN, DOI 10.1007/978-1-4020-1989-0
  • [10] n-dimensional generalizations of the Friedmann-Robertson-Walker cosmology
    Garcia, Alberto A.
    Carlip, Steve
    [J]. PHYSICS LETTERS B, 2007, 645 (2-3) : 101 - 107