Ingham-type inequalities for complex frequencies and applications to control theory

被引:10
作者
Edward, Julian [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
Ingham-type inequalities; control theory; beam equation;
D O I
10.1016/j.jmaa.2005.12.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For complex valued sequences {omega(n)}(infinity)(n=1) of the form omega(n) = a(n) + ib(n) with a(n) is an element of R and b(n) >= 0, we prove inequalities of the form integral(T)(0)vertical bar Sigma(infinity)(n=p) x(n)e(it omega n)vertical bar(2) dt asymptotic to Sigma(infinity)(n=p) vertical bar x(n)vertical bar(2)/(1+b(n)), for all sequences {x(n)} with Sigma(infinity)(n=1)vertical bar x(n)vertical bar(2)/(1+b(n)) < infinity. We apply these to prove exact null-controllability for a class of hinged beam equations with mild internal damping with either boundary control or internal control. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:941 / 954
页数:14
相关论文
共 20 条
[1]  
ADVONIN S, 2001, INT J APPL MATH COMP, V11, P803
[2]  
ADVONIN S, 2001, ALGEBRA ANAL, V13, P1
[3]  
[Anonymous], 2005, SPRINGER MONOGR MATH
[4]  
Avalos G, 2003, ANN SCUOLA NORM-SCI, V2, P601
[5]   Ingham-Beurling type theorems with weakened gap conditions [J].
Baiocchi, C ;
Komornik, V ;
Loreti, P .
ACTA MATHEMATICA HUNGARICA, 2002, 97 (1-2) :55-95
[6]   A MATHEMATICAL-MODEL FOR LINEAR ELASTIC-SYSTEMS WITH STRUCTURAL DAMPING [J].
CHEN, G ;
RUSSELL, DL .
QUARTERLY OF APPLIED MATHEMATICS, 1982, 39 (04) :433-454
[7]  
EDWARD J, 2005, IN PRESS AYMPTOT ANA
[8]   BOUNDS ON FUNCTIONS BIORTHOGONAL TO SETS OF COMPLEX EXPONENTIALS - CONTROL OF DAMPED ELASTIC-SYSTEMS [J].
HANSEN, SW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 158 (02) :487-508
[9]   Some trigonometrical inequalities with applications to the theory of series [J].
Ingham, AE .
MATHEMATISCHE ZEITSCHRIFT, 1936, 41 :367-379
[10]  
Jerison D, 1999, CHIC LEC M, P223