Inhibiting corrosion of aluminum alloy 5083 through Vibrio species biofilm

被引:43
作者
Gao, Yu [1 ,2 ]
Feng, Danqing [3 ]
Moradi, Masoumeh [1 ,2 ]
Yang, Chuntian [1 ,2 ]
Jin, Yuting [1 ,2 ]
Liu, Dan [4 ]
Xu, Dake [1 ,2 ]
Chen, Xiaobo [5 ]
Wang, Fuhui [1 ,2 ]
机构
[1] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110004, Peoples R China
[3] Xiamen Univ, Coll Ocean & Earth Sci, State Prov Joint Engn Lab Marine Bioprod & Techno, Xiamen 361102, Peoples R China
[4] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
[5] RMIT Univ, Sch Engn, Carlton, Vic 3053, Australia
基金
中国国家自然科学基金;
关键词
Aluminum; SEM; EIS; Polarization; Microbiological corrosion; Neutral inhibition; SULFATE-REDUCING BACTERIA; STAINLESS-STEEL; BEHAVIOR;
D O I
10.1016/j.corsci.2020.109188
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microbiologically influenced corrosion inhibition (MICI) of aluminum alloy (AA) 5083 by three representative Vibrio species were evaluated using electrochemical, surface analysis and surface characterization techniques. Interestingly, all the bacteria exhibited profound inhibitory effect on the corrosion of AA5083 in the chloride-containing culture medium. The MICI mechanism of tested Vibrio species is that mature biofilms acted as a diffusion barrier to prevent the penetration of corrosive chloride and consumed up the diffused oxygen by their aerobic respiration. Thus, the biofilm increased the passive range and inhibited the localized attack on the AA5083 surfaces.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria [J].
Antony, P. J. ;
Chongdar, Shobhana ;
Kumar, Pradeep ;
Raman, R. .
ELECTROCHIMICA ACTA, 2007, 52 (12) :3985-3994
[2]   Biocorrosion: towards understanding interactions between biofilms and metals [J].
Beech, WB ;
Sunner, J .
CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (03) :181-186
[3]   Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J].
Childers, SE ;
Ciufo, S ;
Lovley, DR .
NATURE, 2002, 416 (6882) :767-769
[4]   Corrosion inhibition of mild steel by aerobic biofilm [J].
Chongdar, S ;
Gunasekaran, G ;
Kumar, P .
ELECTROCHIMICA ACTA, 2005, 50 (24) :4655-4665
[5]   Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J].
Dong, Ze Hua ;
Liu, Tao ;
Liu, Hong Fang .
BIOFOULING, 2011, 27 (05) :487-495
[6]   Corrosion behavior of AA5083 produced by high-energy ball milling [J].
Esteves, L. ;
Witharamage, C. S. ;
Christudasjustus, J. ;
Walunj, G. ;
O'Brien, S. P. ;
Ryu, S. ;
Borkar, T. ;
Akans, R. E. ;
Gupta, R. K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 857
[7]  
Guan F., 2019, J MATER SCI TECHNOL, P55
[8]   Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J].
Guan, Fang ;
Zhai, Xiaofan ;
Duan, Jizhou ;
Zhang, Jie ;
Li, Ke ;
Hou, Baorong .
SURFACE & COATINGS TECHNOLOGY, 2017, 316 :171-179
[9]   Influence of bacteria on film formation inhibiting corrosion [J].
Gunasekaran, G ;
Chongdar, S ;
Gaonkar, SN ;
Kumar, P .
CORROSION SCIENCE, 2004, 46 (08) :1953-1967
[10]   Corrosion behaviour of chromium coatings obtained by direct and reverse pulse plating electrodeposition in NaCl aqueous solution [J].
Imaz, N. ;
Ostra, M. ;
Vidal, M. ;
Diez, J. A. ;
Sarret, M. ;
Garcia-Lecina, E. .
CORROSION SCIENCE, 2014, 78 :251-259