Classical interventions in quantum systems. I. The measuring process

被引:45
|
作者
Peres, A [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevA.61.022116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The measuring process is an external intervention in the dynamics of a quantum system. It involves a unitary interaction of that system with a measuring apparatus, a further interaction of both with an unknown environment causing decoherence, and then the deletion of a subsystem. This description of the measuring process is a substantial generalization of current models in quantum measurement theory. In particular, no ancilla is needed. The final result is represented by a completely positive map of the quantum state rho (possibly with a change of the dimensions of rho). A continuous limit of the above process leads to Lindblad's equation for the quantum-dynamical semigroup [Commun. Math. Phys. 48, 119(1976)].
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Speed function of viscosity of disperse systems. I.
    Ostwald, W
    KOLLOID-ZEITSCHRIFT, 1925, 36 (02): : 99 - 117
  • [22] Superstable linear control systems. I. Analysis
    Polyak, BT
    Shcherbakov, PS
    AUTOMATION AND REMOTE CONTROL, 2002, 63 (08) : 1239 - 1254
  • [23] Superstable Linear Control Systems. I. Analysis
    B. T. Polyak
    P. S. Shcherbakov
    Automation and Remote Control, 2002, 63 : 1239 - 1254
  • [25] Influence of processing method on the exfoliation process for organically modified clay systems. I. Polyurethanes
    Rhoney, I
    Brown, S
    Hudson, NE
    Pethrick, RA
    JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 91 (02) : 1335 - 1343
  • [26] Dynamics of pair of coupled nonlinear systems. I. Magnetic systems
    Kovalev, A.S.
    Prilepskii, Y.E.
    Gradjushko, K.A.
    Fizika Nizkikh Temperatur, 2020, 46 (08): : 1014 - 1020
  • [27] Dynamics of pair of coupled nonlinear systems. I. Magnetic systems
    Kovalev, A. S.
    Prilepskii, Y. E.
    Gradjushko, K. A.
    LOW TEMPERATURE PHYSICS, 2020, 46 (08) : 856 - 862
  • [28] Systems for Identification of Information Systems States Part I. Examples of Systems.
    Seidler, Jerzy
    1600, (30):
  • [29] Classical propagator for quadratic quantum systems. Example of a trapped ion
    Man'ko, O
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (5-7): : 643 - 647
  • [30] Quantum geometrodynamics revived I. Classical constraint algebra
    Lang, Thorsten
    Schander, Susanne
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (18)