Entanglement of two-qubit quantum Heisenberg XYZ chain

被引:0
作者
Xi, XQ [1 ]
Hao, SR
Chen, WX
Yue, RH
机构
[1] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
[2] Xian Inst Posts & Telecommun, Fundamental Dept, Xian 710061, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the analytic expression of the concurrence in the quantum Heisenberg XYZ model and discuss the influence of parameters J, Delta and Gamma on the concurrence. By choosing different values of Gamma and Delta, we obtain the XX, XY, XXX and XXZ chains. The concurrence decreases with increasing temperature. When T --> 0, the concurrence reaches its maximum value 1, i.e. the entangled state, \Psi> = root2/2(\01> - \10>), is maximum entanglement. For the XXZ chain, when Gamma --> infinity, the concurrence will meet its maximum value C-max = sinh(1/T)/cosh(1/T).
引用
收藏
页码:1044 / 1047
页数:4
相关论文
共 37 条
[1]  
Arnesen M. C., QUANTPH0009060
[2]  
Bell J. S, 1987, SPEAKABLE UNSPEAKABL
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[7]   Coupled quantum dots as quantum gates [J].
Burkard, G ;
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW B, 1999, 59 (03) :2070-2078
[8]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[9]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[10]   Universal quantum computation with the exchange interaction [J].
DiVincenzo, DP ;
Bacon, D ;
Kempe, J ;
Burkard, G ;
Whaley, KB .
NATURE, 2000, 408 (6810) :339-342