Existence and Uniqueness of Solutions for the p(x)-Laplacian Equation with Convection Term

被引:12
作者
Wang, Bin-Sheng [1 ]
Hou, Gang-Ling [1 ]
Ge, Bin [2 ]
机构
[1] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian equation; convection term; pseudomonotone operators; existence results; uniqueness; EXPONENT ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; POSITIVE SOLUTIONS; GROWTH; REGULARITY; DEPENDENCE; GRADIENT; SPACES; PERTURBATION; FUNCTIONALS;
D O I
10.3390/math8101768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and uniqueness of solutions for a quasilinear elliptic equation with a variable exponent and a reaction term depending on the gradient. Based on the surjectivity result for pseudomonotone operators, we prove the existence of at least one weak solution of such a problem. Furthermore, we obtain the uniqueness of the solution for the above problem under some considerations. Our results generalize and improve the existing results.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 48 条
  • [1] Harnack's inequality and the strong p(.)-Laplacian
    Adamowicz, Tomasz
    Hasto, Peter
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1631 - 1649
  • [2] Electrorheological Fluids Equations Involving Variable Exponent with Dependence on the Gradient via Mountain Pass Techniques
    Ayazoglu , R.
    Ekincioglu, Ismail
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (09) : 1144 - 1157
  • [3] ELLIPTIC INTERPOLATION ESTIMATES FOR NON-STANDARD GROWTH OPERATORS
    Baroni, Paolo
    Habermann, Jens
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 119 - 162
  • [4] Regularity estimates for quasilinear elliptic equations with variable growth involving measure data
    Byun, Sun-Sig
    Ok, Jihoon
    Park, Jung-Tae
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (07): : 1639 - 1667
  • [5] Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity
    Byun, Sun-Sig
    Ok, Jihoon
    Ryu, Seungjin
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 715 : 1 - 38
  • [6] Byun SS, 2015, MATH ANN, V363, P1023, DOI 10.1007/s00208-015-1194-z
  • [7] Carl S, 2007, SPRINGER MONOGR MATH, P1
  • [8] Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatics problems
    Cekic, B.
    Kalinin, A. V.
    Mashiyev, R. A.
    Avci, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 838 - 851
  • [9] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [10] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +