On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces

被引:17
作者
Matsushita, Shin-ya [1 ]
Xu, Li [1 ]
机构
[1] Akita Prefectural Univ, Dept Elect & Informat Syst, Akita, Japan
关键词
Variational inequality; Weak sharp; Proximal point algorithm; Metric projection; Gradient projection method; Extragradient method; Hilbert space; PROXIMAL POINT ALGORITHM; NONEXPANSIVE-MAPPINGS; MONOTONE-OPERATORS; PROJECTION; TERMINATION; THEOREMS;
D O I
10.1007/s10957-013-0460-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In a Hilbert space, we study the finite termination of iterative methods for solving a monotone variational inequality under a weak sharpness assumption. Most results to date require that the sequence generated by the method converges strongly to a solution. In this paper, we show that the proximal point algorithm for solving the variational inequality terminates at a solution in a finite number of iterations if the solution set is weakly sharp. Consequently, we derive finite convergence results for the gradient projection and extragradient methods. Our results show that the assumption of strong convergence of sequences can be removed in the Hilbert space case.
引用
收藏
页码:701 / 715
页数:15
相关论文
共 50 条
[1]  
[Anonymous], 2007, Finite-dimensional variational inequalities and complementarity problems
[2]  
Aubin J-P., 1984, APPL NONLINEAR ANAL
[3]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[4]   A new proximal point iteration that converges weakly but not in norm [J].
Bauschke, HH ;
Burke, JV ;
Deutsch, FR ;
Hundal, HS ;
Vanderwerff, JD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1829-1835
[5]   The asymptotic behavior of the composition of two resolvents [J].
Bauschke, HH ;
Combettes, PL ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (02) :283-301
[6]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738
[7]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[8]   WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING [J].
BURKE, JV ;
FERRIS, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1340-1359
[9]   ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS [J].
BURKE, JV ;
MORE, JJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1197-1211
[10]   PROJECTED GRADIENT METHODS FOR LINEARLY CONSTRAINED PROBLEMS [J].
CALAMAI, PH ;
MORE, JJ .
MATHEMATICAL PROGRAMMING, 1987, 39 (01) :93-116