From Newton's Law to the Linear Boltzmann Equation Without Cut-Off

被引:14
作者
Ayi, Nathalie [1 ,2 ]
机构
[1] Univ Nice Sophia Antipolis, UMR CNRS UNS 7351, Parc Valrose, F-06108 Nice 2, France
[2] INRIA Sophia Antipolis Mediterranee, Project COFFEE, Valbonne, France
关键词
LONG-RANGE INTERACTIONS; GLOBAL EXISTENCE; ANGULAR CUTOFF; LOW-DENSITY; LIMIT;
D O I
10.1007/s00220-016-2821-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.
引用
收藏
页码:1219 / 1274
页数:56
相关论文
共 19 条
[1]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[2]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[3]   THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF IN THE WHOLE SPACE: II, GLOBAL EXISTENCE FOR HARD POTENTIAL [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C-J ;
Yang, T. .
ANALYSIS AND APPLICATIONS, 2011, 9 (02) :113-134
[4]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[5]   Remarks on 3D Boltzmann linear equation without cutoff [J].
Alexandre, R .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1999, 28 (05) :433-473
[6]  
[Anonymous], 1975, Thesis
[7]  
Bobylev A.V., 2012, COMMUN MATH PHYS, V319, P683
[8]   The Brownian motion as the limit of a deterministic system of hard-spheres [J].
Bodineau, Thierry ;
Gallagher, Isabelle ;
Saint-Raymond, Laure .
INVENTIONES MATHEMATICAE, 2016, 203 (02) :493-553
[9]   From hard spheres dynamics to the Stokes-Fourier equations: An L2 analysis of the Boltzmann-Grad limit [J].
Bodineau, Thierry ;
Gallagher, Isabelle ;
Saint-Raymond, Laure .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (07) :623-627
[10]  
Cercignani C., 1988, BOLTZMANN EQUATION I