Molecular dynamics and NMR spin relaxation in proteins

被引:170
作者
Case, DA [1 ]
机构
[1] Scripps Res Inst, Dept Biol Mol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/ar010020l
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular dynamics simulations often play a central role in the analysis of biomolecular NMR data. The focus here is on NMR spin-relaxation, which can provide unique insights into the time-dependence of conformational fluctuations, especially on picosecond to nanosecond time scales which can be directly probed by simulations. A great deal has been learned from such simulations about the general nature of such motions and their impact on NMR observables. In principle, relaxation measurements should also provide valuable benchmarks for judging the quantitative accuracy of simulations, but there are a variety of experimental and computational obstacles to making useful direct comparisons. It seems likely that simulations on time scales that are just now becoming generally feasible may provide important new information on internal motions, overall rotational diffusion, and the coupling between internal and rotational motion. Such information could provide a sound foundation for a new generation of detailed interpretation of NMR spin-relaxation results.
引用
收藏
页码:325 / 331
页数:7
相关论文
共 61 条
[1]   A Bayesian statistical method for the detection and quantification of rotational diffusion anisotropy from NMR relaxation data [J].
Andrec, M ;
Inman, KG ;
Weber, DJ ;
Levy, RM ;
Montelione, GT .
JOURNAL OF MAGNETIC RESONANCE, 2000, 146 (01) :66-80
[2]   Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods [J].
Andrec, M ;
Montelione, GT ;
Levy, RM .
JOURNAL OF MAGNETIC RESONANCE, 1999, 139 (02) :408-421
[3]   Precision and uncertainty in the characterization of anisotropic rotational diffusion by 15N relaxation [J].
Blackledge, M ;
Cordier, F ;
Dosset, P ;
Marion, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (18) :4538-4539
[4]   Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation [J].
Bremi, T ;
Bruschweiler, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (28) :6672-6673
[5]  
BRUSCHWEILER R, 1992, J AM CHEM SOC, V114, P5341, DOI 10.1021/ja00039a052
[6]   COLLECTIVE NMR RELAXATION MODEL APPLIED TO PROTEIN DYNAMICS [J].
BRUSCHWEILER, R ;
CASE, DA .
PHYSICAL REVIEW LETTERS, 1994, 72 (06) :940-943
[7]   LONG-RANGE MOTIONAL RESTRICTIONS IN A MULTIDOMAIN ZINC-FINGER PROTEIN FROM ANISOTROPIC TUMBLING [J].
BRUSCHWEILER, R ;
LIAO, XB ;
WRIGHT, PE .
SCIENCE, 1995, 268 (5212) :886-889
[8]   CHARACTERIZATION OF BIOMOLECULAR STRUCTURE AND DYNAMICS BY NMR CROSS-RELAXATION [J].
BRUSCHWEILER, R ;
CASE, DA .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1994, 26 :27-58
[9]   Calculations of NMR dipolar coupling strengths in model peptides [J].
Case, DA .
JOURNAL OF BIOMOLECULAR NMR, 1999, 15 (02) :95-102
[10]   Molecular dynamics of staphylococcal nuclease:: Comparison of simulation with 15N and 13C NMR relaxation data [J].
Chatfield, DC ;
Szabo, A ;
Brooks, BR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (21) :5301-5311