Emergence of robust growth laws from optimal regulation of ribosome synthesis

被引:291
作者
Scott, Matthew [1 ]
Klumpp, Stefan [2 ]
Mateescu, Eduard M. [3 ,4 ]
Hwa, Terence [3 ,4 ,5 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Max Planck Inst Colloids & Interfaces, Potsdam, Germany
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[5] ETH, Inst Theoret Studies, Zurich, Switzerland
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
growth control; metabolic control; phenomenological model; resource allocation; synthetic biology; TRANSFER-RNA-SYNTHETASE; AMINO-ACID TRANSPORT; ESCHERICHIA-COLI; FEEDBACK INHIBITION; PROTEIN-SYNTHESIS; GENE-EXPRESSION; ACTIVE-SITE; DISCRIMINATION; TRANSCRIPTION; PURIFICATION;
D O I
10.15252/msb.20145379
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms.
引用
收藏
页数:14
相关论文
共 91 条
[1]   From essential to persistent genes: a functional approach to constructing synthetic life [J].
Acevedo-Rocha, Carlos G. ;
Fang, Gang ;
Schmidt, Markus ;
Ussery, David W. ;
Danchin, Antoine .
TRENDS IN GENETICS, 2013, 29 (05) :273-279
[2]   Fast, cheap and somewhat in control [J].
Arkin, Adam P. ;
Fletcher, Daniel A. .
GENOME BIOLOGY, 2006, 7 (08)
[3]   NEW METHOD FOR ISOLATION OF METHIONYL TRANSFER-RNA SYNTHETASE MUTANTS FROM ESCHERICHIA-COLI [J].
ARMSTRONG, JB ;
FAIRFIELD, JA .
CANADIAN JOURNAL OF MICROBIOLOGY, 1975, 21 (06) :754-758
[4]   Discrimination of cognate and noncognate substrates at the active site of class II lysyl-tRNA synthetase [J].
Ataide, SF ;
Ibba, M .
BIOCHEMISTRY, 2004, 43 (37) :11836-11841
[5]   Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli [J].
Bennett, Bryson D. ;
Kimball, Elizabeth H. ;
Gao, Melissa ;
Osterhout, Robin ;
Van Dien, Stephen J. ;
Rabinowitz, Joshua D. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (08) :593-599
[6]   Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions [J].
Bollenbach, Tobias ;
Quan, Selwyn ;
Chait, Remy ;
Kishony, Roy .
CELL, 2009, 139 (04) :707-718
[7]   SERYL-TRANSFER-RNA SYNTHETASE FROM ESCHERICHIA-COLI - IMPLICATION OF ITS N-TERMINAL DOMAIN IN AMINOACYLATION ACTIVITY AND SPECIFICITY [J].
BOREL, F ;
VINCENT, C ;
LEBERMAN, R ;
HARTLEIN, M .
NUCLEIC ACIDS RESEARCH, 1994, 22 (15) :2963-2969
[8]  
Bremer H., 1996, ESCHERICHIA COLI SAL, V2nd, P1553
[9]  
CEDAR H, 1969, J BIOL CHEM, V244, P4122
[10]   CONTROL OF RIBOSOMAL-RNA TRANSCRIPTION IN ESCHERICHIA-COLI [J].
CONDON, C ;
SQUIRES, C ;
SQUIRES, CL .
MICROBIOLOGICAL REVIEWS, 1995, 59 (04) :623-&