A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach

被引:39
作者
Liu, Yu [1 ,2 ]
Xi, Du-Gang [3 ]
Li, Zhao-Liang [4 ,5 ]
Hong, Yang [6 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[3] PLA Informat Engn Univ, Zhengzhou 450001, Peoples R China
[4] Chinese Acad Agr Sci, Key Lab Agri Informat, Minist Agr, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[5] CNRS, UdS, ICube, F-67412 Illkirch Graffenstaden, France
[6] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Quantitative precipitation nowcasting; Pyramid Lucas-Kanade optical flow method; Pixel level; Fengyun-2F; CONTINENTAL RADAR IMAGES; SCALE-DEPENDENCE; TRACKING; PREDICTABILITY; FORECAST; IDENTIFICATION; ALGORITHM; SYSTEM;
D O I
10.1016/j.jhydrol.2015.07.042
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Short-term high-resolution Quantitative Precipitation Nowcasting (QPN) has important implications for navigation, flood forecasting, and other hydrological and meteorological concerns. This study proposes a new algorithm called Pixel-based QPN using the Pyramid Lucas-Kanade Optical Flow method (PPLK), which comprises three steps: employing a Pyramid Lucas-Kanade Optical Flow method (PLKOF) to estimate precipitation advection, projecting rainy clouds by considering the advection and evolution pixel by pixel, and interpolating QPN imagery based on the space-time continuum of cloud patches. The PPLK methodology was evaluated with 2338 images from the geostationary meteorological satellite Fengyun-2F (FY-2F) of China and compared with two other advection-based methods, i.e., the maximum correlation method and the Horn-Schunck Optical Flow scheme. The data sample covered all intensive observations since the launch of FY-2F, despite covering a total of only approximately 10 days. The results show that the PPLK performed better than the algorithms used for comparison, demonstrating less time expenditure, more effective cloud tracking, and improved QPN accuracy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 364
页数:11
相关论文
共 51 条
  • [1] Large-Scale Nonlinear Conjunctive Use Optimization Problem: Decomposition Algorithm
    Afshar, Abbas
    Zahraei, Ali
    Marino, Miguel A.
    [J]. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2010, 136 (01): : 59 - 71
  • [2] Computing optical flow via variational techniques
    Aubert, G
    Deriche, R
    Kornprobst, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) : 156 - 182
  • [3] AUSTIN GL, 1974, Q J ROY METEOR SOC, V100, P658
  • [4] The computation of optical flow
    Beauchemin, SS
    Barron, JL
    [J]. ACM COMPUTING SURVEYS, 1995, 27 (03) : 433 - 467
  • [5] SBMcast - An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation
    Berenguer, Marc
    Sempere-Torres, Daniel
    Pegram, Geoffrey G. S.
    [J]. JOURNAL OF HYDROLOGY, 2011, 404 (3-4) : 226 - 240
  • [6] Development of a precipitation nowcasting algorithm based upon optical flow techniques
    Bowler, NEH
    Pierce, CE
    Seed, A
    [J]. JOURNAL OF HYDROLOGY, 2004, 288 (1-2) : 74 - 91
  • [7] FAST FILTER TRANSFORMS FOR IMAGE-PROCESSING
    BURT, PJ
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 16 (01): : 20 - 51
  • [8] Cheung P., 2012, P 3 WMO INT S NOWC V, P10
  • [9] Dynamic ANN for precipitation estimation and forecasting from radar observations
    Chiang, Yen-Ming
    Chang, Fi-John
    Jou, Ben Jong-Dao
    Lin, Pin-Fang
    [J]. JOURNAL OF HYDROLOGY, 2007, 334 (1-2) : 250 - 261
  • [10] DIXON M, 1993, J ATMOS OCEAN TECH, V10, P785, DOI 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO