Any order imaginary time propagation method for solving the Schrodinger equation

被引:37
作者
Chin, Siu A. [1 ]
Janecek, S. [2 ]
Krotscheck, E. [2 ]
机构
[1] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[2] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.cplett.2009.01.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The eigenvalue-function pair of the 3D Schrodinger equation can be efficiently computed by use of high order, imaginary time propagators. Due to the diffusion character of the kinetic energy operator in imaginary time, algorithms developed so far are at most 4th order. In this work, we show that for a grid based algorithm, imaginary time propagation of any even order can be devised on the basis of multi-product splitting. The effectiveness of these algorithms, up to the 12th order, is demonstrated by computing all 120 eigenstates of a model C-60 molecule to very high precisions. The algorithms are particularly useful when implemented on parallel computer architectures. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:342 / 346
页数:5
相关论文
共 21 条
[1]   A fast configuration space method for solving local Kohn-Sham equations [J].
Aichinger, M ;
Krotscheck, E .
COMPUTATIONAL MATERIALS SCIENCE, 2005, 34 (02) :188-212
[2]   A fourth-order real-space algorithm for solving local Schrodinger equations [J].
Auer, J ;
Krotscheck, E ;
Chin, SA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (15) :6841-6846
[3]   Complex integration steps in decomposition of quantum exponential evolution operators [J].
Bandrauk, AD ;
Dehghanian, E ;
Lu, HZ .
CHEMICAL PHYSICS LETTERS, 2006, 419 (4-6) :346-350
[4]   Real-space mesh techniques in density-functional theory [J].
Beck, TL .
REVIEWS OF MODERN PHYSICS, 2000, 72 (04) :1041-1080
[5]   Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo [J].
Brualla, L ;
Sakkos, K ;
Boronat, J ;
Casulleras, J .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (02) :636-643
[6]   Structure of positive decompositions of exponential operators [J].
Chin, SA .
PHYSICAL REVIEW E, 2005, 71 (01)
[7]   Symplectic integrators from composite operator factorizations [J].
Chin, SA .
PHYSICS LETTERS A, 1997, 226 (06) :344-348
[8]  
CHIN SA, 2008, ARXIV08090914
[9]  
FEIT MD, 1983, J CHEM PHYS, V78, P301, DOI 10.1063/1.444501
[10]   Evolution-operator method for density functional theory [J].
Hernández, E. R. ;
Janecek, S. ;
Kaczmarski, M. ;
Krotscheck, E. .
PHYSICAL REVIEW B, 2007, 75 (07)