Robust Skin Type Classification Using Convolutional Neural Networks

被引:0
|
作者
Chang, Cheng-Chun [1 ]
Hsing, Shi-Tien [1 ]
Chuang, Yung-Chi [1 ]
Wu, Chien-Ta [1 ]
Fang, Tung-Jing [2 ]
Choi, Bill [3 ]
Chen, Kuan-Fu [4 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
[2] Natl Def Med Ctr, Biomed Engn Res Ctr, Taipei, Taiwan
[3] NanoLambda Inc, Daejeon, South Korea
[4] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung, Taiwan
关键词
skin spectrum; convolutional neural networks; Fitzpatrick skin type; human facial spectra;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Skin spectrum is used in a wide range of applications including medical science, dermatology, cosmetics science, and biometric face recognition. However, it is noticed that the composition of complex tissue layers and the uneven outer surface of the skin make skin spectrum evaluation error-prone. In other words, the skin reflection spectra of the same measurement area from the same person could show different spectral characteristics. Recently, Deep Learning algorithms show robust classification results in the area such as visual recognition, image labeling, speech recognition, and hyperspectral image. In this work, a commonly used Deep Learning method, Convolutional Neural Network, is introduced for studying robust Fitzpatrick skin type classification. Considering the small sample size of the skin spectra dataset in this paper, a single convolutional layer Convolutional Neural Network model is applied. To evaluate the performance of our simplified Convolutional Neural Network model, an Artificial Neural Network model, as well as the traditional ITA Fitzpatrick classification approach are also compared. The classification result of our Convolutional Neural Network model shows a better Fitzpatrick skin type classification, with an accuracy rate up to 92.59%.
引用
收藏
页码:2011 / 2014
页数:4
相关论文
共 50 条
  • [21] Classification of Fruits using Convolutional Neural Networks
    Raut, Roshani
    Jadhav, Anuja
    Sorte, Chaitrali
    Chaudhari, Anagha
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [22] Texture classification using convolutional neural networks
    Tivive, Fok Hing Chi
    Bouzerdoum, Abdesselam
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 660 - +
  • [23] Emphysema Classification Using Convolutional Neural Networks
    Pei, Xiaomin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2015, PT I, 2015, 9244 : 455 - 461
  • [24] Weather Classification using Convolutional Neural Networks
    An, Jehong
    Chen, Yunfan
    Shin, Hyunchul
    2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 245 - 246
  • [25] Sentiment Classification Using Convolutional Neural Networks
    Kim, Hannah
    Jeong, Young-Seob
    APPLIED SCIENCES-BASEL, 2019, 9 (11):
  • [26] Using Convolutional Neural Networks for Plant Classification
    Razavi, Salar
    Yalcin, Hulya
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [27] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [28] Apparel Classification Using Convolutional Neural Networks
    Eshwar, S. G.
    Prabhu, Gautham Ganesh J.
    Rishikesh, A. V.
    Charan, N. A.
    Umadevi, V
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ICT IN BUSINESS INDUSTRY & GOVERNMENT (ICTBIG), 2016,
  • [29] Wheel Classification Using Convolutional Neural Networks
    Nie, Yuncong
    Xia, Siyu
    Wu, Yu
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 515 - 520
  • [30] Using Convolutional Neural Networks for Emoticon Classification
    Burnik, K.
    Knezevic, D. Bjelobrk
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1614 - 1618