Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system

被引:2
|
作者
Guo, Xuan [1 ]
Wang, Yuehua [1 ]
Wu, Meixiao [1 ]
Hu, Jianbing [1 ]
Wang, Xuefei [2 ]
Yu, Ming [2 ]
Tang, Hui [1 ]
机构
[1] Hebei Univ, Inst Life Sci & Green Dev, Sch Life Sci, Baoding 071002, Peoples R China
[2] Hebei Res Ctr Geoanal, Baoding 071052, Peoples R China
关键词
CRISPR; Cas9; Gene insertion; Homologous recombination; pCRCTG; Saccharomyces cerevisiae; KNOCK-IN; HIGH-EFFICIENCY; GENOME; GENERATION; REPORTER; LOCUS; CELLS;
D O I
10.1007/s13205-021-02648-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The aim of this work was to rapidly and efficiently insert target DNA sequences into predetermined genomic sites in Saccharomyces cerevisiae. In this study, we designed two technical routes for gene insertion in the S. cerevisiae genome based on the CRISPR/Cas9 system, and a CRISPR array was inserted into the Amp site and the crRNA site of the pCRCT plasmid, respectively. The CRISPR array consists of a 100 bp donor sequence, the target gene and guide sequence. A 100 bp donor sequence was designed to have two 50 bp homology arms flanking the Cas9 cutting site and incorporate 8 bp or 1000 bp deletions including the PAM sequence, where the target gene was also inserted. The results showed that using only one pCRCTG plasmid and a 100 bp dsDNA mutagenizing homologous recombination donor, we can successfully insert a 2.9 kb gene fragment at the target site of the S. cerevisiae genome. However, inserting the CRISPR array into the crRNA site has a higher recombination efficiency than inserting into the Amp site. This recombination strategy represents a powerful tool for creating yeast strains with target gene inserts.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system
    Xuan Guo
    Yuehua Wang
    Meixiao Wu
    Jianbing Hu
    Xuefei Wang
    Ming Yu
    Hui Tang
    3 Biotech, 2021, 11
  • [2] Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae
    Hao, Huanhuan
    Wang, Xiaofei
    Jia, Haiyan
    Yu, Miao
    Zhang, Xiaoyu
    Tang, Hui
    Zhang, Liping
    ANALYTICAL BIOCHEMISTRY, 2016, 509 : 118 - 123
  • [3] Gene Deletion in Saccharomyces cerevisiae Using CRISPR-Cas9 System
    Niu, Xiaodi
    Li, Tianming
    Liu, Jinlei
    Yang, Tianyong
    Li, Ziyi
    Feng, Huiyong
    Shipin Kexue/Food Science, 2019, 40 (06): : 151 - 158
  • [4] Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
    Jakounas, Tadas
    Sonde, Ida
    Herrgard, Markus
    Harrison, Scott J.
    Kristensen, Mette
    Pedersen, Lasse E.
    Jensen, Michael K.
    Keasling, Jay D.
    METABOLIC ENGINEERING, 2015, 28 : 213 - 222
  • [5] Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools
    Liang, Yaokun
    Gao, Song
    Qi, Xianghui
    Valentovich, Leonid N.
    An, Yingfeng
    ACS SYNTHETIC BIOLOGY, 2024, 13 (02): : 428 - 448
  • [6] A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9
    Mans, Robert
    Wijsman, Melanie
    Daran-Lapujade, Pascale
    Daran, Jean-Marc
    FEMS YEAST RESEARCH, 2018, 18 (07)
  • [7] CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories
    Meng, Jie
    Qiu, Yue
    Shi, Shuobo
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [8] A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae
    EauClaire, Steven F.
    Webb, Christopher J.
    YEAST, 2019, 36 (10) : 607 - 615
  • [9] Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae
    Ting Xue
    Kui Liu
    Duo Chen
    Xue Yuan
    Jingping Fang
    Hansong Yan
    Luqiang Huang
    Youqiang Chen
    Wenjin He
    World Journal of Microbiology and Biotechnology, 2018, 34
  • [10] Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae
    Xue, Ting
    Liu, Kui
    Chen, Duo
    Yuan, Xue
    Fang, Jingping
    Yan, Hansong
    Huang, Luqiang
    Chen, Youqiang
    He, Wenjin
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2018, 34 (10):