New bounds for linear codes of covering radii 2 and 3

被引:7
作者
Bartoli, Daniele [1 ]
Davydov, Alexander A. [2 ]
Giulietti, Massimo [1 ]
Marcugini, Stefano [1 ]
Pambianco, Fernanda [1 ]
机构
[1] Perugia Univ, Dept Math & Comp Sci, I-06123 Perugia, Italy
[2] Russian Acad Sci, Kharkevich Inst, Inst Informat Transmiss Problems, Moscow 127051, Russia
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2019年 / 11卷 / 05期
关键词
Covering codes; Saturating sets; The length function; Upper bounds; Projective spaces; SATURATING SETS; PACKING PROBLEM; CODING THEORY; STATISTICS;
D O I
10.1007/s12095-018-0335-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The length function l(q) (r, R) is the smallest length of a q-ary linear code of covering radius R and codimension r. In this work we obtain new upper bounds on l(q) (2t + 1, 2), l(q) (3t + 1, 3), l(q) (3t + 2, 3), t >= 1. In particular, we prove that l(q)(3, 2) <= root q(3 lnq + ln ln q) + root q/3 ln q + 3 for all q, l(q) (3, 2) <= 1.05 root 3q ln q for q <= 321007, l(q) (4, 3) < 2.8 (3 root) q ln q for q <= 6229, and l(q) (5, 3) < 3 (3)root q2 ln q for q <= 761. The new bounds on l(q) (2t + 1, 2), l(q) (3t + 1, 3), l(q) (3t + 2, 3), t > 1, are then obtained by lift-constructions. For q a non-square the new bound on l(q) (2t+ 1, 2) improves the previously known ones. For many values of q not equal (q')(3) and r not equal 3t we provide infinite families of [n, n-r](q)3 codes showing that l(q) (r, 3) approximate to c (3)root ln q . q((r-3)/3), where c is a universal constant. As far as it is known to the authors, such families have not been previously described in the literature.
引用
收藏
页码:903 / 920
页数:18
相关论文
共 32 条
[1]  
[Anonymous], 1998, OXFORD MATH MONOGR
[2]  
Bartoli D., 2015, ARXIV150501426
[3]  
Bartoli D., 2015, ARXIV13122155V3
[4]  
Bartoli D., 2015, ARXIV14040469V2
[5]  
Bartoli D., 2018, ARXIV171207078V3
[6]  
Bartoli D., 2018, ARXIV14040469V3
[7]   New Bounds for Linear Codes of Covering Radius 2 [J].
Bartoli, Daniele ;
Davydov, Alexander A. ;
Giulietti, Massimo ;
Marcugini, Stefano ;
Pambianco, Fernanda .
CODING THEORY AND APPLICATIONS, ICMCTA 2017, 2017, 10495 :1-10
[8]  
Bartoli D, 2016, INT SYMP PROBL RED, P18, DOI 10.1109/RED.2016.7779320
[9]   Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search [J].
Bartoli, Daniele ;
Davydov, Alexander A. ;
Faina, Giorgio ;
Kreshchuk, Alexey A. ;
Marcugini, Stefano ;
Pambianco, Fernanda .
JOURNAL OF GEOMETRY, 2016, 107 (01) :89-117
[10]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265