Stability of multi-compacton solutions and Backlund transformation in K(m,n,1)

被引:29
作者
Tian, LX [1 ]
Yin, JL [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
D O I
10.1016/j.chaos.2004.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a fifth-order K(m, n, 1) equation with nonlinear dispersion to obtain multi-compacton solutions by Adomian decomposition method. Using the homogeneous balance (HB) method, we derive a Backlund transformation of a special equation K(2,2,1) to determine some solitary solutions of the equation. To study the stability of multicompacton solutions in K(m,n,1) and to obtain some conservation laws, we present a similar fifth-order equation derived from Lagrangian. We finally show the linear stability of all obtained multi-compacton solutions. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 19 条
[1]   Auto-Backlund transformation and exact solutions for modified nonlinear dispersive mK(m, n) equations [J].
Chen, Y ;
Li, B ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :693-698
[2]   Compacton solutions for a class of two parameter generalized odd-order Korteweg-de Vries equations [J].
Dey, B .
PHYSICAL REVIEW E, 1998, 57 (04) :4733-4738
[3]   Stationary solitons of the fifth order KdV-type. Equations and their stabilization [J].
Dey, B ;
Khare, A ;
Kumar, CN .
PHYSICS LETTERS A, 1996, 223 (06) :449-452
[4]   Stability of compacton solutions of fifth-order nonlinear dispersive equations [J].
Dey, B ;
Khare, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (30) :5335-5344
[5]   Stability of compacton solutions [J].
Dey, B ;
Khare, A .
PHYSICAL REVIEW E, 1998, 58 (03) :R2741-R2744
[6]   Breather compactons in nonlinear Klein-Gordon systems [J].
Dinda, PT ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (05) :6218-6221
[7]   New exact solutions for a generalized variable coefficients 2D KdV equation [J].
Elwakil, SA ;
El-Labany, SK ;
Zahran, MA ;
Sabry, R .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1083-1086
[8]   Stabilization of soliton instabilities by higher order dispersion: KdV-type equations [J].
Karpman, VI .
PHYSICS LETTERS A, 1996, 210 (1-2) :77-84
[9]   HIGHER-ORDER DAVEY-STEWARTSON EQUATIONS [J].
NAKAO, T ;
WADATI, M .
CHAOS SOLITONS & FRACTALS, 1994, 4 (05) :701-708
[10]   Compactons in a class of nonlinearly quintic equations [J].
Rosenau, P ;
Levy, D .
PHYSICS LETTERS A, 1999, 252 (06) :297-306