Systematic construction of hidden nonlocal symmetries for the inhomogeneous nonlinear diffusion equation

被引:20
作者
Moitsheki, RJ
Broadbridge, P
Edwards, MP
机构
[1] Univ Wollongong, Inst Math Modelling & Computat Syst, Wollongong, NSW 2522, Australia
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 34期
关键词
D O I
10.1088/0305-4470/37/34/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a class of inhomogeneous nonlinear diffusion equations (INDE) that arise in solute transport theory. Hidden nonlocal symmetries that seem not to be recorded in the literature are systematically determined by considering an integrated equation, obtained using the general integral variable, rather than a system of first-order partial differential equations (PDEs) associated with the concentration and flux of a conservation law. Reductions for the INDE to ordinary differential equations (ODEs) are performed and some invariant solutions are constructed.
引用
收藏
页码:8279 / 8286
页数:8
相关论文
共 23 条
[1]  
Bear J., 1988, DYNAMICS FLUIDS PORO
[2]  
Bluman G. W., 1990, Eur. J. Appl. Math, V1, P217
[3]  
Bluman G. W., 1989, Symmetries and Differential Equations
[4]  
BLUMAN GW, 1990, EUR J APPL MATH, V1, P189, DOI DOI 10.1017/S0956792500000176
[5]   INTEGRABLE FLOW EQUATIONS THAT INCORPORATE SPATIAL HETEROGENEITY [J].
BROADBRIDGE, P .
TRANSPORT IN POROUS MEDIA, 1987, 2 (02) :129-144
[7]   Potential symmetries and invariant solutions for the inhomogeneous nonlinear diffusion equation [J].
Khater, AH ;
Moussa, MHM ;
Abdul-Aziz, SF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 312 (1-2) :99-108
[8]   RECIPROCAL BACKLUND-TRANSFORMATIONS OF CONSERVATION-LAWS [J].
KINGSTON, JG ;
ROGERS, C .
PHYSICS LETTERS A, 1982, 92 (06) :261-264
[9]  
MOITSHEKI RJ, UNPUB TRANSP POROUS
[10]   GROUP TRANSFORMATIONS AND THE NON-LINEAR HEAT DIFFUSION EQUATION [J].
MUNIER, A ;
BURGAN, JR ;
GUTIERREZ, J ;
FIJALKOW, E ;
FEIX, MR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (02) :191-207