Parameter selection method for SVM with PSO

被引:0
|
作者
Peng Xiyuan [1 ]
Wu Hongxing [1 ]
Peng Yu [1 ]
机构
[1] Harbin Inst Technol, Automat Test & Control Inst, Harbin 150001, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2006年 / 15卷 / 04期
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In purpose of automatically tuning multiple parameters for Support vector machine (SVM), a parameter selection method is proposed for SVM based on Particle swarm optimal (PSO) algorithm. In our method, each particle indicates a choice of multiple parameters, the population is a collection of particles, and the new method only requires the evaluation of an objective function to guide its search without additional derivatives or auxiliary knowledge required. The number ratio of support vectors to training samples is used to estimate the generalization performance. The new method is tested on different sizes of benchmark datasets with binary class problem. Simulation results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:638 / 642
页数:5
相关论文
共 50 条
  • [21] A heuristic method for parameter selection in LS-SVM: Application to time series prediction
    Rubio, Gines
    Pomares, Hector
    Rojas, Ignacio
    Javier Herrera, Luis
    INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (03) : 725 - 739
  • [22] Parameter selection and optimization method of SVM model for short-term load forecasting
    Faculty of Information Engineering, Shanghai Maritime University, Shanghai 200135, China
    不详
    Zhongguo Dianji Gongcheng Xuebao, 2006, 22 (17-22):
  • [23] Parameter analysis and improvement of PSO satellite selection algorithm
    Wang E.
    Yang D.
    Wang C.
    Qu P.
    Pang T.
    Lan X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (11): : 2133 - 2138
  • [24] Feature Selection in Gait Classification Using Geometric PSO Assisted by SVM
    Yeoh, Tze Wei
    Zapotecas-Martinez, Saul
    Akimoto, Youhei
    Aguirre, Hernan E.
    Tanaka, Kiyoshi
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 566 - 578
  • [25] SVM Model Selection Using PSO for Learning Handwritten Arabic Characters
    El Mamoun, Mamouni
    Mahmoud, Zennaki
    Kaddour, Sadouni
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (03): : 995 - 1008
  • [26] An optimal SVM with feature selection using multi-objective PSO
    Behravan, Iman
    Zahiri, Seyed Hamid
    Dehghantanha, Oveis
    2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 76 - 81
  • [27] Feature Selection for the Stored-grain Insects Based on PSO and SVM
    Zhang, Hongtao
    Mao, Hanping
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 586 - 589
  • [28] Optimal feature selection using PSO with SVM for epileptic EEG classification
    Murugavel, A. S. Muthanantha
    Ramakrishnan, S.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2014, 16 (04) : 343 - 358
  • [29] Optimal Gaussian Kernel Parameter Selection for SVM Classifier
    Yang, Xu
    Xiong, HuiLin
    Yang, Xin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (12) : 3352 - 3358
  • [30] SVM classification model in depression recognition based on mutation PSO parameter optimization
    Zhang, Ming
    Lu, Shengfu
    Li, Mi
    Zhai, Qian
    Zhou, Jia
    Lu, Xiaofeng
    Xu, Jiying
    Xue, Jia
    Zhong, Ning
    2016 INTERNATIONAL CONFERENCE ON MEDICINE SCIENCES AND BIOENGINEERING (ICMSB2016), 2017, 8