Parameter selection method for SVM with PSO

被引:0
|
作者
Peng Xiyuan [1 ]
Wu Hongxing [1 ]
Peng Yu [1 ]
机构
[1] Harbin Inst Technol, Automat Test & Control Inst, Harbin 150001, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2006年 / 15卷 / 04期
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In purpose of automatically tuning multiple parameters for Support vector machine (SVM), a parameter selection method is proposed for SVM based on Particle swarm optimal (PSO) algorithm. In our method, each particle indicates a choice of multiple parameters, the population is a collection of particles, and the new method only requires the evaluation of an objective function to guide its search without additional derivatives or auxiliary knowledge required. The number ratio of support vectors to training samples is used to estimate the generalization performance. The new method is tested on different sizes of benchmark datasets with binary class problem. Simulation results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:638 / 642
页数:5
相关论文
共 50 条
  • [1] RBF kernel parameter selection for SVM based on PSO
    Wu, HX
    Peng, XY
    Peng, Y
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 1603 - 1606
  • [2] A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    Huang, Cheng-Lung
    Dun, Jian-Fan
    APPLIED SOFT COMPUTING, 2008, 8 (04) : 1381 - 1391
  • [4] Automatic Parameters Selection for SVM Based on PSO
    ZHANG MingfengZHU YinghuaZHENG XuLIU YuSchool of ScienceAnshan University of Science and TechnologyAnshanChinaThe Iron and Steel Corpof AnshanAnshanChina
    现代电子技术, 2007, (01) : 121 - 123
  • [5] Feature selection using PSO-SVM
    Tu, Chung-Jui
    Chuang, Li-Yeh
    Chang, Jun-Yang
    Yang, Cheng-Hong
    IMECS 2006: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, 2006, : 138 - +
  • [6] Parameter Optimization Method of Steam Generator Level Controller based on SVM and Improved PSO
    Xu, Haiqin
    Li, Linkun
    Shi, Changqing
    Li, Xiaoyu
    Geng, Pengcheng
    Kong, Xiangsong
    Proceedings - 2022 Chinese Automation Congress, CAC 2022, 2022, 2022-January : 3209 - 3214
  • [7] A New Object Detection Method Based On T Mutation Pso For Svm Parameter Optimization
    Zhang Yang
    Yang Shumin
    Wu Shaoxiong
    Xin Dongrong
    2019 11TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2019), 2019, : 726 - 728
  • [8] An Efficient Model for Data Classification Based on SVM Grid Parameter Optimization and PSO Feature Weight Selection
    Ali, Ahmed Hussein
    Abdullah, Mahmood Zaki
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2020, 12 (01): : 1 - 12
  • [9] A New SVM Parameter Selection Method Based on the Bound of Structure Risk
    Liu, Junhui
    Wang, Miao
    Wang, Xi
    2015 IEEE ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2015, : 939 - 942
  • [10] Active Testing for SVM Parameter Selection
    Miranda, Pericles B. C.
    Prudencio, Ricardo B. C.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,