Variational Inequalities for the Fractional Laplacian

被引:9
作者
Musina, Roberta [1 ]
Nazarov, Alexander I. [2 ,3 ]
Sreenadh, Konijeti [4 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, Via Sci 206, I-33100 Udine, Italy
[2] Steklov Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[3] St Petersburg State Univ, Univ Skii Pr 28, St Petersburg 198504, Russia
[4] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Variational inequalities; Fractional Laplacian; Free boundary problems; OBSTACLE PROBLEM; REGULARITY; OPERATORS; BOUNDARY;
D O I
10.1007/s11118-016-9591-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the obstacle problems for the fractional Lapalcian of order s a (0, 1) in a bounded domain , under mild assumptions on the data.
引用
收藏
页码:485 / 498
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 2000, INTRO VARIATIONAL IN
[2]  
[Anonymous], 1996, DEGRUYTER SERIES NON
[3]  
Barrios B., 2015, ARXIV150604684
[4]  
BREZIS HR, 1968, B SOC MATH FR, V96, P153
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]   Regularity of solutions to the parabolic fractional obstacle problem [J].
Caffarelli, Luis ;
Figalli, Alessio .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 :191-233
[7]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[8]  
Cozzi M., 2015, PREPRINT
[9]   Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem [J].
Garofalo, Nicola ;
Petrosyan, Arshak .
INVENTIONES MATHEMATICAE, 2009, 177 (02) :415-461
[10]   H s versus C 0-weighted minimizers [J].
Iannizzotto, Antonio ;
Mosconi, Sunra ;
Squassina, Marco .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (03) :477-497