Anomaly cancellation and smooth non-Kahler solutions in heterotic string theory

被引:90
作者
Becker, Katrin
Becker, Melanie
Fu, Ji-Xiang
Tseng, Li-Sheng [1 ]
Yau, Shing-Tung
机构
[1] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
[2] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, College Stn, TX 77843 USA
[3] Harvard Univ, Radcliffe Inst, Cambridge, MA 02138 USA
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
[6] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1016/j.nuclphysb.2006.05.034
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that six-dimensional backgrounds that are T-2 bundle over a Calabi-Yau two-fold base are consistent smooth solutions of heterotic flux compactifications. We emphasize the importance of the anomaly cancellation condition which can only be satisfied if the base is K3 while a T-4 base is excluded. The conditions imposed by anomaly cancellation for the T2 bundle structure, the dilaton field, and the holomorphic stable bundles are analyzed and the solutions determined. Applying duality, we check the consistency of the anomaly cancellation constraints with those for flux backgrounds of M-theory on eight-manifolds. (c) 2006 Elsevier B.V. All fights reserved.
引用
收藏
页码:108 / 128
页数:21
相关论文
共 43 条
[31]  
Li J, 2005, J DIFFER GEOM, V70, P143
[32]  
LI J, 1987, MATH ASPECTS STRING, V560
[33]  
Lubke M., 1995, KOBAYASHI HITCHIN CO
[34]   ON THE EXISTENCE OF SPECIAL METRICS IN COMPLEX-GEOMETRY [J].
MICHELSOHN, ML .
ACTA MATHEMATICA, 1982, 149 (3-4) :261-295
[35]  
Mukai Shigeru, 1987, SUGAKU EXPOSITIONS, V39, P216
[36]   Lectures on heterotic M-theory [J].
Ovrut, BA .
STRINGS, BRANES AND EXTRA DIMENSIONS, 2004, :359-406
[38]  
Sharpe E., LECT D BRANES SHEAVE
[39]   SUPERSTRINGS WITH TORSION [J].
STROMINGER, A .
NUCLEAR PHYSICS B, 1986, 274 (02) :253-284
[40]   Mirror symmetry is T-duality [J].
Strominger, A ;
Yau, ST ;
Zaslow, E .
NUCLEAR PHYSICS B, 1996, 479 (1-2) :243-259