Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process

被引:0
作者
Shen, Liang [1 ,2 ]
Xu, Qingsong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Linyi Univ, Sch Sci, Linyi, Peoples R China
关键词
fractional Ornstein-Uhlenbeck process; minimum L-1-norm estimator; fractional Brownian motion; asymptotic law; PARAMETER-ESTIMATION;
D O I
10.1186/1687-1847-2014-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the minimum L-1-norm estimator theta(epsilon)* of the parameter theta of a linear stochastic differential equation dX(t) = theta X-t dt + epsilon dB(t)(H), X-0 = x(0), where {B-t(H), 0 <= t <= T} is a fractional Brownian motion. The asymptotic law of its limit distribution is studied for T -> +infinity, when epsilon -> 0.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Minimum contrast estimation in fractional Ornstein-Uhlenbeck process: Continuous and discrete sampling [J].
Jaya P. N. Bishwal .
Fractional Calculus and Applied Analysis, 2011, 14 :375-410
[42]   Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes [J].
Xiao WeiLin ;
Zhang WeiGuo ;
Zhang XiLi .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1497-1511
[44]   MINIMUM CONTRAST ESTIMATION IN FRACTIONAL ORNSTEIN-UHLENBECK PROCESS: CONTINUOUS AND DISCRETE SAMPLING [J].
Bishwal, Jaya P. N. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) :375-410
[45]   Multiple fractional integrals through Gamma-mixed Ornstein-Uhlenbeck process [J].
Tudor, Constantin ;
Tudor, Maria .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 75 (3-4) :327-338
[46]   An active fractional Ornstein-Uhlenbeck particle: diffusion and dissipation [J].
Rangaig, Norodin A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07)
[47]   On parameter estimation of the hidden Ornstein-Uhlenbeck process [J].
Kutoyants, Yury A. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 :248-263
[48]   Multi-mixed fractional Brownian motions and Ornstein-Uhlenbeck processes [J].
Almani, Hamidreza Maleki ;
Sottinen, Tommi .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2023, 10 (04) :343-366
[49]   Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter [J].
Hu, Yaozhong ;
Nualart, David ;
Zhou, Hongjuan .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) :111-142
[50]   Parameter estimation for nonergodic Ornstein-Uhlenbeck process driven by the weighted fractional Brownian motion [J].
Panhong Cheng ;
Guangjun Shen ;
Qin Chen .
Advances in Difference Equations, 2017