Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process

被引:0
作者
Shen, Liang [1 ,2 ]
Xu, Qingsong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Linyi Univ, Sch Sci, Linyi, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
关键词
fractional Ornstein-Uhlenbeck process; minimum L-1-norm estimator; fractional Brownian motion; asymptotic law; PARAMETER-ESTIMATION;
D O I
10.1186/1687-1847-2014-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the minimum L-1-norm estimator theta(epsilon)* of the parameter theta of a linear stochastic differential equation dX(t) = theta X-t dt + epsilon dB(t)(H), X-0 = x(0), where {B-t(H), 0 <= t <= T} is a fractional Brownian motion. The asymptotic law of its limit distribution is studied for T -> +infinity, when epsilon -> 0.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Harnack inequalities for functional SDEs driven by fractional Ornstein-Uhlenbeck process [J].
Li, Zhi ;
Liu, Meiqian ;
Xu, Liping .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (03) :1611-1631
[32]   Statistical inference for the rough homogenization limit of multiscale fractional Ornstein-Uhlenbeck processes [J].
Alonso-Martin, Pablo Ramses ;
Boedihardjo, Horatio ;
Papavasiliou, Anastasia .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2025, 30
[33]   Fractional Ornstein-Uhlenbeck Levy processes and the Telecom process: Upstairs and downstairs [J].
Wolpert, RL ;
Taqqu, MS .
SIGNAL PROCESSING, 2005, 85 (08) :1523-1545
[34]   Volatility estimation in fractional Ornstein-Uhlenbeck models [J].
Bajja, Salwa ;
Es-Sebaiy, Khalifa ;
Viitasaari, Lauri .
STOCHASTIC MODELS, 2020, 36 (01) :94-111
[35]   Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process with periodic mean [J].
Belfadli, Rachid ;
Es-Sebaiy, Khalifa ;
Farah, Fatima-Ezzahra .
METRIKA, 2022, 85 (07) :885-911
[36]   Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process of the Second Kind [J].
Balde, Maoudo Faramba ;
Es-Sebaiy, Khalifa ;
Tudor, Ciprian A. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03) :785-814
[37]   ADMISSION CONTROL FOR MULTIDIMENSIONAL WORKLOAD INPUT WITH HEAVY TAILS AND FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Budhiraja, Amarjit ;
Pipiras, Vladas ;
Song, Xiaoming .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) :476-505
[38]   On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes [J].
Lee, Chihoon ;
Song, Jian .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2016, 88 (05) :751-778
[39]   Statistical inference in discretely observed fractional Ornstein-Uhlenbeck processes [J].
Li, Yicun ;
Teng, Yuanyang .
CHAOS SOLITONS & FRACTALS, 2023, 177
[40]   EFFICIENT ESTIMATORS FOR GEOMETRIC FRACTIONAL BROWNIAN MOTION PERTURBED BY FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Alhagyan, Mohammed ;
Misiran, Masnita ;
Omar, Zurni .
ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 62 (02) :203-226