Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process

被引:0
作者
Shen, Liang [1 ,2 ]
Xu, Qingsong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Linyi Univ, Sch Sci, Linyi, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
关键词
fractional Ornstein-Uhlenbeck process; minimum L-1-norm estimator; fractional Brownian motion; asymptotic law; PARAMETER-ESTIMATION;
D O I
10.1186/1687-1847-2014-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the minimum L-1-norm estimator theta(epsilon)* of the parameter theta of a linear stochastic differential equation dX(t) = theta X-t dt + epsilon dB(t)(H), X-0 = x(0), where {B-t(H), 0 <= t <= T} is a fractional Brownian motion. The asymptotic law of its limit distribution is studied for T -> +infinity, when epsilon -> 0.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] On integration by parts formula and characterization of fractional Ornstein-Uhlenbeck process
    Sun, Xiaoxia
    Guo, Feng
    STATISTICS & PROBABILITY LETTERS, 2015, 107 : 170 - 177
  • [22] Minimum distance estimation for fractional Ornstein-Uhlenbeck type process
    Liu, Zaiming
    Song, Na
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [23] Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process
    Maslowski, Bohdan
    Tudor, Ciprian A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07): : 880 - 901
  • [24] An Exponential Nonuniform Berry-Esseen Bound for the Fractional Ornstein-Uhlenbeck Process
    Jiang, Hui
    Zhou, Jingying
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 1037 - 1058
  • [25] On Simulation of a Fractional Ornstein-Uhlenbeck Process of the Second Kind by the Circulant Embedding Method
    Morlanes, Jose Igor
    Andreev, Andriy
    STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 : 155 - 164
  • [26] Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process
    Maslowski, Bohdan
    Pospisil, Jan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (03) : 401 - 429
  • [27] Pairs trading with fractional Ornstein-Uhlenbeck spread model
    Xiang, Yun
    Zhao, Yonghong
    Deng, Shijie
    APPLIED ECONOMICS, 2023, 55 (23) : 2607 - 2623
  • [28] Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process
    Bohdan Maslowski
    Jan Pospíšil
    Applied Mathematics and Optimization, 2008, 57 : 401 - 429
  • [29] Parameter identification for the Hermite Ornstein-Uhlenbeck process
    Assaad, Obayda
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 251 - 270
  • [30] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,