Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process

被引:0
作者
Shen, Liang [1 ,2 ]
Xu, Qingsong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Linyi Univ, Sch Sci, Linyi, Peoples R China
关键词
fractional Ornstein-Uhlenbeck process; minimum L-1-norm estimator; fractional Brownian motion; asymptotic law; PARAMETER-ESTIMATION;
D O I
10.1186/1687-1847-2014-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the minimum L-1-norm estimator theta(epsilon)* of the parameter theta of a linear stochastic differential equation dX(t) = theta X-t dt + epsilon dB(t)(H), X-0 = x(0), where {B-t(H), 0 <= t <= T} is a fractional Brownian motion. The asymptotic law of its limit distribution is studied for T -> +infinity, when epsilon -> 0.
引用
收藏
页数:7
相关论文
共 50 条
[21]   On integration by parts formula and characterization of fractional Ornstein-Uhlenbeck process [J].
Sun, Xiaoxia ;
Guo, Feng .
STATISTICS & PROBABILITY LETTERS, 2015, 107 :170-177
[22]   Minimum distance estimation for fractional Ornstein-Uhlenbeck type process [J].
Liu, Zaiming ;
Song, Na .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[23]   Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process [J].
Maslowski, Bohdan ;
Tudor, Ciprian A. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07) :880-901
[24]   Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process [J].
Maslowski, Bohdan ;
Pospisil, Jan .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (03) :401-429
[25]   An Exponential Nonuniform Berry-Esseen Bound for the Fractional Ornstein-Uhlenbeck Process [J].
Jiang, Hui ;
Zhou, Jingying .
JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) :1037-1058
[26]   On Simulation of a Fractional Ornstein-Uhlenbeck Process of the Second Kind by the Circulant Embedding Method [J].
Morlanes, Jose Igor ;
Andreev, Andriy .
STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 :155-164
[27]   Pairs trading with fractional Ornstein-Uhlenbeck spread model [J].
Xiang, Yun ;
Zhao, Yonghong ;
Deng, Shijie .
APPLIED ECONOMICS, 2023, 55 (23) :2607-2623
[28]   Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process [J].
Bohdan Maslowski ;
Jan Pospíšil .
Applied Mathematics and Optimization, 2008, 57 :401-429
[29]   Parameter identification for the Hermite Ornstein-Uhlenbeck process [J].
Assaad, Obayda ;
Tudor, Ciprian A. .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) :251-270
[30]   Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process [J].
Shen, Guangjun ;
Li, Yunmeng ;
Gao, Zhenlong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,