Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process

被引:0
|
作者
Shen, Liang [1 ,2 ]
Xu, Qingsong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Linyi Univ, Sch Sci, Linyi, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
关键词
fractional Ornstein-Uhlenbeck process; minimum L-1-norm estimator; fractional Brownian motion; asymptotic law; PARAMETER-ESTIMATION;
D O I
10.1186/1687-1847-2014-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the minimum L-1-norm estimator theta(epsilon)* of the parameter theta of a linear stochastic differential equation dX(t) = theta X-t dt + epsilon dB(t)(H), X-0 = x(0), where {B-t(H), 0 <= t <= T} is a fractional Brownian motion. The asymptotic law of its limit distribution is studied for T -> +infinity, when epsilon -> 0.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Liang Shen
    Qingsong Xu
    Advances in Difference Equations, 2014
  • [2] Functional Limit Theorems for the Fractional Ornstein-Uhlenbeck Process
    Gehringer, Johann
    Li, Xue-Mei
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) : 426 - 456
  • [3] ASYMPTOTIC DISTRIBUTIONS FOR ORNSTEIN-UHLENBECK PROCESS
    BEEKMAN, JA
    JOURNAL OF APPLIED PROBABILITY, 1975, 12 (01) : 107 - 114
  • [4] Asymptotic theory for explosive fractional Ornstein-Uhlenbeck processes
    Jiang, Hui
    Pan, Yajuan
    Xiao, Weilin
    Yang, Qingshan
    Yu, Jun
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3931 - 3974
  • [5] Some properties of the fractional Ornstein-Uhlenbeck process
    Yan, Litan
    Lu, Yunsheng
    Xu, Zhiqiang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (14)
  • [6] On the local times of fractional Ornstein-Uhlenbeck process
    Yan, LT
    Tian, M
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 73 (03) : 209 - 220
  • [7] Limit theorems for a nonhomogeneous Ornstein-Uhlenbeck process
    Rusakov O.V.
    Chuprunov A.N.
    Journal of Mathematical Sciences, 2007, 145 (2) : 4900 - 4913
  • [8] On parameter estimation of fractional Ornstein-Uhlenbeck process
    Farah, Fatima-Ezzahra
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (03) : 161 - 170
  • [9] The Local Time of the Fractional Ornstein-Uhlenbeck Process
    Shen, Guangjun
    Zhu, Dongjin
    Ren, Yong
    Ding, Xueping
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] Functional Law for the Anticipating Ornstein-Uhlenbeck Process
    Stoica, George
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (02) : 275 - 278