THE HAUSDORFF DIMENSION OF HORSESHOES UNDER RANDOM PERTURBATIONS

被引:4
|
作者
Shu, Lin [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Bowen ball; fiber topological entropy; future generic point; horseshoe; hyperbolic RDS; relativized entropy; relativized pressure; TRANSFORMATIONS; ENTROPY; SETS;
D O I
10.1142/S0219493709002609
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the distribution of the set of future generic points for an ergodic measure of a bundle random dynamical system; and prove that the Hausdorff dimension of a two dimensional horseshoe is stable under random perturbations.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 50 条
  • [41] CAPACITARY DIMENSION AND HAUSDORFF DIMENSION
    KAHANE, JP
    LECTURE NOTES IN MATHEMATICS, 1984, 1096 : 393 - 400
  • [42] HAUSDORFF DIMENSION OF LIMSUP SETS OF RANDOM RECTANGLES IN PRODUCTS OF REGULAR SPACES
    Ekstrom, Fredrik
    Jarvenpaa, Esa
    Jarvenpaa, Maarit
    Suomala, Ville
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) : 2509 - 2521
  • [43] THE HAUSDORFF DIMENSION OF THE TWO-DIMENSIONAL EDWARDS RANDOM-WALK
    KOUKIOU, F
    PASCHE, J
    PETRITIS, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1385 - 1391
  • [44] On the construction, properties and Hausdorff dimension of random Cantor one pth set
    Kumari, Sudesh
    Chugh, Renu
    Cao, Jinde
    Huang, Chuangxia
    AIMS MATHEMATICS, 2020, 5 (04): : 3138 - 3155
  • [45] Hausdorff dimension of certain sets related to random αβ-orbits which are not dense
    Peng, Liuqing
    Wu, Jun
    Xu, Jian
    JOURNAL OF NUMBER THEORY, 2024, 261 : 22 - 35
  • [46] The Hausdorff dimension of a class of random self-similar fractal trees
    Croydon, D. A.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (03) : 708 - 730
  • [47] Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution
    Lalley, SP
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 629 - 654
  • [48] Topological horseshoes for perturbations of singular difference equations
    Li, MC
    Malkin, M
    NONLINEARITY, 2006, 19 (04) : 795 - 811
  • [49] BOUNDS ON THE HAUSDORFF DIMENSION OF RANDOM ATTRACTORS FOR INFINITE-DIMENSIONAL RANDOM DYNAMICAL SYSTEMS ON FRACTALS
    Boehm, Markus
    Schmalfuss, Bjoern
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3115 - 3138
  • [50] OPTIMAL CONTROL UNDER RANDOM PERTURBATIONS
    ESKIN, VI
    AUTOMATION AND REMOTE CONTROL, 1967, (09) : 1260 - &