Backward error analysis of Neville elimination

被引:26
作者
Alonso, P [1 ]
Gasca, M [1 ]
Pena, JM [1 ]
机构
[1] UNIV ZARAGOZA, DEPT MATEMAT APLICADA, ZARAGOZA, SPAIN
关键词
D O I
10.1016/S0168-9274(96)00051-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Neville elimination is a useful alternative to Gauss elimination in order to study many properties of totally positive matrices. In this paper we perform a backward error analysis of that elimination procedure. In the case of totally positive matrices, the error bounds are similar to those obtained previously by other authors for Gauss elimination. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 23 条
[1]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[2]   LEAST SUPPORTED BASES AND LOCAL LINEAR INDEPENDENCE [J].
CARNICER, JM ;
PENA, JM .
NUMERISCHE MATHEMATIK, 1994, 67 (03) :289-301
[3]  
CARNICER JM, 1994, MATH NACHR, V169, P69
[4]   TOTALLY POSITIVE BASES FOR SHAPE-PRESERVING CURVE DESIGN AND OPTIMALITY OF B-SPLINES [J].
CARNICER, JM ;
PENA, JM .
COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (06) :633-654
[5]   TOTAL POSITIVITY OF SPLINE COLLOCATION MATRIX [J].
DEBOOR, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (06) :541-551
[6]  
DEBOOR C, 1977, NUMER MATH, V27, P485, DOI 10.1007/BF01399609
[7]  
Forsythe GE, 1967, COMPUTER SOLUTION LI
[8]   PARALLEL ALGORITHMS FOR DENSE LINEAR ALGEBRA COMPUTATIONS [J].
GALLIVAN, KA ;
PLEMMONS, RJ ;
SAMEH, AH .
SIAM REVIEW, 1990, 32 (01) :54-135
[9]  
Gasca M, 1996, MATH APPL, V359, P109
[10]  
Gasca M., 1992, Numerical Algorithms, V2, P225, DOI 10.1007/BF02145387