INSTRUMENTAL VARIABLES AND LSM IN CONTINUOUS-TIME PARAMETER ESTIMATION

被引:4
作者
Escobar, Jesica [1 ]
Enqvist, Martin [2 ]
机构
[1] Natl Polytech Inst, Sch Mech & Elect Engn, Dept Automat Control, Av IPN Col Lindavista, Mexico City 07738, DF, Mexico
[2] Linkoping Univ, Div Automat Control, S-58183 Linkoping, Sweden
关键词
Parameter estimation; continuous-time; stochastic systems; instrumental variable; IDENTIFICATION;
D O I
10.1051/cocv/2015052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the main goal is to compare the instrumental variables and the least squares methods applied to parameter estimation in continuous-time systems, avoiding any preliminary discretization of the process, and to analyse which method is more suitable for estimation in continuous-time under stochastic perturbations. A numerical example illustrates the effectiveness of the algorithms.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[2]  
Bowden R., 1984, Instrumental variables
[3]   Differential Neuro-Fuzzy Controller for Uncertain Nonlinear Systems [J].
Chairez, Isaac .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (02) :369-384
[4]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[5]  
Davis M. H. A., 1977, LINEAR ESTIMATION ST
[6]  
Edwards C., 1998, Sliding mode control: theory and applications
[7]   Time-varying matrix estimation in stochastic continuous-time models under coloured noise using LSM with forgetting factor [J].
Escobar, J. ;
Poznyak, A. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (12) :2009-2020
[8]   Robust Continuous-Time Matrix Estimation under Dependent Noise Perturbations: Sliding Modes Filtering and LSM with Forgetting [J].
Escobar, J. ;
Poznyak, A. .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2009, 28 (02) :257-282
[9]  
Gard T. C., 1988, INTRO STOCHASTIC DIF
[10]  
Gilson M, 2004, P AMER CONTR CONF, P2846